Appendix A. LCIRP Statutory Requirements

RSA 378:37 Statutory Requirement	Location in LCIRP
A forecast of future demand for the utility's service area.	Section 2; Appendix B
An assessment of demand-side energy management programs, including conservation, efficiency, and load management programs.	Section 6.
An assessment of supply options including owned capacity, market procurements, renewable energy, and distributed energy resources.	Section 3; Section 4; Section 5.
An assessment of distribution and transmission requirements, including an assessment of the benefits and costs of "smart grid" technologies, and the institution or extension of electric utility programs designed to ensure a more reliable and resilient grid to prevent or minimize power outages, including but not limited to, infrastructure automation and technologies.	Section 3; Section 4.
An assessment of plan integration and impact on state compliance with the Clean Air Act of 1990, as amended, and other environmental laws that may impact a utility's assets or customers.	Executive Summary; Appendix A.
An assessment of the plan's long- and short- term environmental, economic, and energy price and supply impact on the state.	Executive Summary; Section 3; Section 4.4; Section 6.
An assessment of plan integration and consistency with the state energy strategy under RSA 4-E:1	Executive Summary; Appendix A.

Figure A-1. LCIRP Compliance with Statutory Requirements

1

2

1	Consistency with the Federal Clean Air Act
2	RSA 378:38 V states that a utility's LCIRP shall include "an assessment of plan
3	integration and impact on state compliance with the Clean Air Act of 1990 ("CAA"), as
4	amended, and other environmental laws that may impact a utility's assets or customers."
5	As explained in more detail in Section 3, as a result of restructuring in 1998, Liberty
6	Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities ("Liberty" or the
7	"Company") does not own generation, and therefore is not subject to CAA Section 112
8	compliance requirements on electric generating facilities (i.e., "stationary sources").
9	Further, Liberty Utilities purchases electricity supply from the wholesale market, which
10	is increasingly dominated by cleaner natural gas in the New England region, while
11	generation from coal and oil has declined. ¹
12	In addition, renewable sources of electric generation and energy efficiency are increasing
13	within the ISO-NE's resource mix. According to the ISO-NE, 42% of the proposed
14	generation in the interconnection queue is for wind resources. Because much of the new
15	capacity pending is from renewable resources and natural gas, the regional resource mix
16	is becoming increasingly less carbon intensive. Since Liberty's electricity supply as
17	procured through its Energy Service RFP (described in Section 3), and therefore is
18	representative of the regional resource mix, Liberty's electricity supply is expected to
19	become increasingly less carbon intensive over time.

¹ See, "State of the Grid: Managing a System in Transition," Presentation by Gordon Van Welie, CEO ISO-NE, January 21, 2015, slide 13. <u>http://www.iso-ne.com/static-</u> <u>assets/documents/2015/01/stateofgrid_presentation_01212015.pdf</u>

1	Finally, the recently released Clean Power Plan ² (which is promulgated under the CAA)
2	established greenhouse gas emission guidelines specifically targeted to fossil fuel-fired
3	electric generating plants. As noted earlier, Liberty does not own generation which
4	would be subject to the Clean Power Plan's regulations. However, New England's
5	evolvement away from coal-fired plants, combined with the increase in low- and zero-
6	carbon generation means that the New England is well positioned to benefit and comply
7	with Clean Power Plan. In fact, one analysis ranked New Hampshire second among U.S.
8	states regarding its ease of compliance with the Clean Power Plan. ³ According to that
9	analysis, New Hampshire is already 35% below its emissions goal set by the Clean Power
10	Plan.
11	Consistency with the New Hampshire State Energy Plan
12	RSA 378:38 requires an LCIRP to include "an assessment of plan integration and
13	consistency with the state energy strategy under RSA 4-E:1." As described below,
14	Liberty's LCIRP is consistent with the New Hampshire 10-year State Energy Strategy
15	("SES"), released by the New Hampshire Office of Energy and Planning in September
16	2014, and implemented by Governor Hassan on July 8, 2015.
17	The SES provides recommendations regarding New Hampshire's energy policies and
18	programs organized into four categories: (1) Electric Grid of the Future, (2) Energy

19

² http://www2.epa.gov/sites/production/files/2015-08/documents/cpp-final-rule.pdf

³ Grant, Annalee, "Some states still have long road to Clean Power Plan compliance," SNL Financial, August 5, 2015.

⁴ New Hampshire Office of Energy & Planning, New Hampshire 10-Year State Energy Strategy, September

three categories apply to the electric utilities, this section addresses the LCIRP's
 compliance with those categories.

3 Electric Grid of the Future

4	The SES recommends the Commission open an investigation into Grid Modernization. ⁵
5	Pursuant to House Bill 614, the Commission opened Docket No. IR 15-296 Electric
6	Distribution Utilities Investigation into Grid Modernization on July 30, 2015. The
7	purpose of the proceeding is to gather information and "give stakeholders a chance to
8	learn about grid modernization and to explore to what extent that grid modernization is
9	workable in New Hampshire." ⁶ On September 17, 2015, Liberty Utilities filed initial
10	comments and will continue to be an active participant in the proceeding. As described
11	in Section 4.10, Liberty has provided an assessment of Smart Grid technologies
12	(technologies that are often encompassed in the discussion of grid modernization), and
13	has installed certain distribution automation technologies onto its distribution system.
14	Therefore, this LCIRP is consistent with the SES's recommendations with respect to grid
15	modernization and the "electric grid of the future."
16	Energy Efficiency
17	The SES recommends that the state prioritize capturing more energy efficiency in all
18	sectors through (1) establishing an efficiency goal, (2) addressing utility disincentives, (3)

19

2014, at i-ix.

5 *Ibid.*, at 21.

6 The State of New Hampshire Public Utilities Commission, Docket No. IR 15-296, *Electric Distribution Utilities Investigation into Grid Modernization*, Order of Notice, July 30, 2015, at 2.

improving program coordination, (4) increasing access to financing, and (5) increasing

1	funding for low-income energy efficiency programs. ⁷ The recommendations also
2	included increasing state "lead by example" programs, and adopting newest building
3	codes, however these recommendations are not relevant to utility energy efficiency
4	efforts. Liberty supports these recommendations, and will participate in efforts to address
5	these recommendations.
6	With respect to establishing an efficiency goal, Liberty is an active participant in Docket
7	No. DE 15-137, the Commission's EERS proceeding. As described in Section 6.5,
8	Liberty Utilities supports the creation of an EERS and believes, if structured correctly,
9	there can be significant benefits to businesses, residents and communities in increasing
10	energy efficiency and helping further reduce overall energy usage and demand.
11	Fuel Diversity and Customer Choice
12	The SES recommends fostering sustainable, diverse energy development through
13	enabling policies and regulatory frameworks. ⁸ One important aspect of this is
14	encouraging distributed generation. ⁹ As noted in Section 4.9, Liberty has experienced a
15	significant increase in the amount of distributed generation being interconnected to its
16	distribution system in New Hampshire through the installation of customer-sited
17	generation. In fact, Liberty reached its net metering cap on July 28, 2015. In addition, as
18	described in Section 5.3, Liberty is in the process of evaluating investment in a renewable
19	distributed energy resource, although such discussions are in the infancy stage. Should

⁷ New Hampshire Office of Energy & Planning, *New Hampshire 10-Year State Energy Strategy*, September 2014, at 23.

⁸ *Ibid.*, at 47.

⁹ *Ibid.*, at iv.

1	Liberty determine the benefits of a particular company-owned distributed generation
2	project outweigh the project's cost, the Company will submit a filing to the Commission
3	pursuant to RSA 374-G:5, and would treat Company-owned or contracted DG option on
4	an equal footing with other wires and non-wires alternatives when selecting the least cost
5	alternative to reducing demand on a particular feeder or group of feeders serving an area.
6	Therefore, Liberty's distribution planning process currently considers and incorporates
7	distributed generation, and has begun the evaluation process of owning distributed
8	generation, in light of the current net metering cap.
0	
9	Accordingly, in Liberty's assessment, this LCIRP consistent with the SES as required in
10	RSA 378:38.

Liberty Utilities New Hampshire

Final Seasonal Peak Forecasts 2015-2031

Prepared By

Business Economic Analysis and Research

November 2015

1 Summary of Results

2 The weather adjusted actual seasonal peaks appear in Table 1 below for Liberty Utilities (Granite

3 State Electric) Corp. d/b/a Liberty Utilities ("Liberty" or the "Company"). Note that the peak

4 load series reflects the historic impacts of both energy efficiency programs and distributed

5 generation activities in the Company's service territory. Since the forecast is based on normal

6 weather conditions, weather adjusting actual peaks enhances comparisons between historic and

7 forecasted peaks.

					Table 1				
				Historic We	eather Adjus	sted Pea	ks		
		Summer		Wthr Adj		Winter		Wthr Adj	
year		month		Peak Mw	Growth	month		Peak Mw	Growth
	2001		8	173.875			12	137.045	
	2002		7	166.678	-4.14%		12	144.988	5.80%
	2003		7	173.651	4.18%		12	143.697	-0.89%
	2004		7	184.579	6.29%		1	150.739	4.90%
	2005		7	193.663	4.92%		12	161.986	7.46%
	2006		7	186.289	-3.81%		1	153.941	-4.97%
	2007		7	186.814	0.28%		12	151.874	-1.34%
	2008		7	194.471	4.10%		12	145.805	-4.00%
	2009		7	189.679	-2.46%		12	153.104	5.01%
	2010		7	188.461	-0.64%		12	147.963	-3.36%
	2011		8	198.758	5.46%		2	151.458	2.36%
	2012		7	187.254	-5.79%		1	152.763	0.86%
	2013		7	193.896	3.55%		12	154.56	1.18%
	2014		7	200.129	3.21%		1	158.652	2.65%
2010	-2014	Avg			1.10%				0.72%

8 The summer peak has grown 1.1% per year over the past five years compared to the winter peak

9 rising .7% annually over the same period.

10 Table 2 displays the Company's 2015-2031 seasonal peak forecasts under normal peak day

11 weather conditions. The forecasted peak values include the historic impacts from both energy

- 1 efficiency programs and distributed generation activities in the Company's service territory. The
- 2 2015 growth is based on the 2014 weather adjusted actual shown in Table 1.

					Table 2				
				Forecasted	Peaks Norn	nal Wea	the	r	
		Summer				Winter			
year		month		Peak Mw	Growth	month		Peak Mw	Growth
	2015		7	199.313	-0.41%		12	155.796	-1.80%
	2016		7	202.412	1.55%		12	157.98	1.40%
	2017		7	205.062	1.31%		12	159.445	0.93%
	2018		7	207.097	0.99%		12	160.367	0.58%
	2019		7	208.843	0.84%		12	161.184	0.51%
	2020		7	210.61	0.85%		12	162.111	0.58%
	2021		7	212.504	0.90%		12	163.176	0.66%
	2022		7	214.425	0.90%		12	164.191	0.62%
	2023		7	216.315	0.88%		12	165.186	0.61%
	2024		7	218.118	0.83%		12	166.048	0.52%
	2025		7	219.853	0.80%		12	166.888	0.51%
	2026		7	221.551	0.77%		12	167.681	0.48%
	2027		7	223.187	0.74%		12	168.401	0.43%
	2028		7	224.798	0.72%		12	169.129	0.43%
	2029		7	226.386	0.71%		12	169.812	0.40%
	2030		7	227.977	0.70%		12	170.533	0.42%
	2031		7	229.572	0.70%		12	171.235	0.41%
2017	-2021	Avg			1.00%				0.66%

- 3 The average annual summer growth rate in peak for 2017-2021 is 1% while the winter average
- 4 annual growth rate is .66% over the same period.
- 5 Table 3 provides the Liberty's 2015-2031 seasonal peak forecasts under extreme weather.
- 6 Although the peaks are higher, the annual growth rates for 2017-2021 are slightly less than the
- 7 growth rates using normal weather.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 4 of 46

			Table 3			
		Forecasted	Peaks Extre	eme Weat	her	
	Summer			Winter		
year	month	Peak Mw	Growth	month	Peak Mw	Growth
2015	5 7	218.904		1	2 171.95	1
2016	5 7	222.054	1.44%	1	2 174.134	1.27%
2017	7	224.755	1.22%	1	2 175.599	0.84%
2018	5 7	226.84	0.93%	1	2 176.521	0.53%
2019	7	228.637	0.79%	1	2 177.338	0.46%
2020) 7	230.455	0.80%	1	2 178.265	0.52%
2021	. 7	232.399	0.84%	1	2 179.33	0.60%
2022	. 7	234.371	0.85%	1	2 180.345	0.57%
2023	5 7	236.311	0.83%	1	2 181.34	0.55%
2024	7	238.165	0.78%	1	2 182.202	0.48%
2025	5 7	239.951	0.75%	1	2 183.042	0.46%
2026	5 7	241.7	0.73%	1	2 183.835	0.43%
2027	' 7	243.387	0.70%	1	2 184.555	0.39%
2028	5 7	245.048	0.68%	1	2 185.283	0.39%
2029	7	246.686	0.67%	1	2 185.966	0.37%
2030) 7	248.328	0.67%	1	2 186.687	0.39%
2031	. 7	249.974	0.66%	1	2 187.389	0.38%
2017-2021	Avg		0.93%			0.60%

1 In previous peak day studies performed by National Grid, Eastern PSA and Western PSA hourly

2 data was the source of historic peak day analysis and subsequent forecasts. In this study,

3 Liberty's system hourly data was the only source of historic peak day analysis. Once the

4 Company's system seasonal peak day forecasts were developed in this analysis, Eastern PSA and

5 Western PSA forecasts were derived by using July and December 2014 coincident peak Eastern

6 and Western PSA percent contributions. Table 4 below reveals the Eastern PSA seasonal

7 forecasts under normal weather conditions.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 5 of 46

				Table 4				
		Ε	astern PS	A Peaks Nor	mal We	athe	er	
	Summer				Winter			
year	month	Ρ	Peak Mw	Growth	month		Peak Mw	Growth
2015	7	7	99.3675			12	73.9954	
2016	5 7	7	100.9126	1.55%		12	75.0327	1.40%
2017	7	7	102.2336	1.31%		12	75.7283	0.93%
2018	5 7	7	103.2482	0.99%		12	76.1664	0.58%
2019) 7	7	104.1187	0.84%		12	76.5543	0.51%
2020) 7	7	104.9995	0.85%		12	76.9946	0.58%
2021	. 7	7	105.9439	0.90%		12	77.5004	0.66%
2022	. 7	7	106.9016	0.90%		12	77.9825	0.62%
2023	5 7	7	107.8438	0.88%		12	78.4551	0.61%
2024	7	7	108.7428	0.83%		12	78.8644	0.52%
2025	5 7	7	109.6078	0.80%		12	79.2635	0.51%
2026	5 7	7	110.4542	0.77%		12	79.6401	0.48%
2027	7	7	111.27	0.74%		12	79.982	0.43%
2028	3 7	7	112.073	0.72%		12	80.3279	0.43%
2029) 7	7	112.8648	0.71%		12	80.6522	0.40%
2030) 7	7	113.6579	0.70%		12	80.9946	0.42%
2031	. 7	7	114.4531	0.70%		12	81.3281	0.41%
2017-2021	Avg			1.00%				0.66%

- 1 Table 5 lists the Western PSA seasonal forecasts under normal weather conditions. The summer
- 2 Western PSA numbers are just slightly higher than the Eastern peak day values while the winter
- 3 Western PSA peaks are around 10% higher than the Eastern numbers.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 6 of 46

Table 5								
	Western PSA Peaks Normal Weather							
	Summer				Winter			
year	month		Peak Mw	Growth	month		Peak Mw	Growth
2	015	7	99.9454			12	81.8007	
2	016	7	101.4994	1.55%		12	82.9473	1.40%
2	017	7	102.8283	1.31%		12	83.7168	0.93%
2	018	7	103.8489	0.99%		12	84.2007	0.58%
2	019	7	104.7246	0.84%		12	84.6296	0.51%
2	020	7	105.6103	0.85%		12	85.1164	0.58%
2	021	7	106.5601	0.90%		12	85.6756	0.66%
2	022	7	107.5235	0.90%		12	86.2086	0.62%
2	023	7	108.4709	0.88%		12	86.7308	0.61%
2	024	7	109.3754	0.83%		12	87.1835	0.52%
2	025	7	110.2453	0.80%		12	87.6244	0.51%
2	026	7	111.0966	0.77%		12	88.0409	0.48%
2	027	7	111.9171	0.74%		12	88.419	0.43%
2	028	7	112.725	0.72%		12	88.8013	0.43%
2	029	7	113.5213	0.71%		12	89.1598	0.40%
2	030	7	114.3191	0.70%		12	89.5383	0.42%
2	031	7	115.1188	0.70%		12	89.9069	0.41%
2017-2	021 Avg			1.00%				0.66%

- 1 Tables 6 and 7 provide the Eastern PSA and Western PSA seasonal forecasts under extreme
- 2 weather conditions. As the case with the normal weather forecasts, The summer Eastern PSA
- 3 values are just slightly lower than the Western PSA numbers while the winter Western PSA
- 4 peaks are 10% than Eastern PSA peak values..

Table 6									
	Eastern PSA Peaks Extreme Weather								
		Summer				Winter			
year		month		Peak Mw	Growth	month		Peak Mw	Growth
	2015		7	109.1346			12	81.6677	
	2016		7	110.7051	1.44%		12	82.7049	1.27%
	2017		7	112.0515	1.22%		12	83.4008	0.84%
	2018		7	113.0911	0.93%		12	83.8387	0.53%
	2019		7	113.987	0.79%		12	84.2266	0.46%
	2020		7	114.8934	0.80%		12	84.667	0.52%
	2021		7	115.8625	0.84%		12	85.1728	0.60%
	2022		7	116.8456	0.85%		12	85.655	0.57%
	2023		7	117.8128	0.83%		12	86.1274	0.55%
	2024		7	118.7372	0.78%		12	86.5368	0.48%
	2025		7	119.6276	0.75%		12	86.9358	0.46%
	2026		7	120.4995	0.73%		12	87.3125	0.43%
	2027		7	121.3406	0.70%		12	87.6544	0.39%
	2028		7	122.1687	0.68%		12	88.0002	0.39%
	2029		7	122.9852	0.67%		12	88.3246	0.37%
	2030		7	123.8039	0.67%		12	88.6669	0.39%
	2031		7	124.6246	0.66%		12	89.0005	0.38%
2017-	2021	Avg			0.93%				0.60%

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 8 of 46

Table 7								
Western PSA Peaks Extreme Weather								
	Summer				Winter			
year	month	ł	Peak Mw	Growth	month		Peak Mw	Growth
2015	5 7	7	109.7695			12	90.2823	
2016	5 7	7	111.3491	1.44%		12	91.429	1.27%
2017	, -	7	112.7035	1.22%		12	92.1985	0.84%
2018	3	7	113.7489	0.93%		12	92.6823	0.52%
2019) 7	7	114.65	0.79%		12	93.1112	0.46%
2020) 7	7	115.5617	0.80%		12	93.598	0.52%
2021		7	116.5364	0.84%		12	94.1573	0.60%
2022	2	7	117.5254	0.85%		12	94.69	0.57%
2023	3	7	118.4981	0.83%		12	95.2126	0.55%
2024	L 7	7	119.4276	0.78%		12	95.6653	0.48%
2025	5 7	7	120.3233	0.75%		12	96.1062	0.46%
2026	5 7	7	121.2006	0.73%		12	96.5226	0.43%
2027	7	7	122.0464	0.70%		12	96.9005	0.39%
2028	3 7	7	122.8793	0.68%		12	97.2829	0.39%
2029) 7	7	123.7009	0.67%		12	97.6414	0.37%
2030) 7	7	124.524	0.67%		12	98.02	0.39%
2031		7	125.3498	0.66%		12	98.3887	0.38%
2017-2022	l Avg			0.93%				0.60%

- 1 The report describes the analytical approach employed in developing the seasonal Company
- 2 forecasts and details the data available for the analysis.

1 Introduction

This report presents the Liberty Utilities (Granite State Electric) d/b/a Liberty Utilities 2 ("Liberty" or the "Company") seasonal peak forecasts for 2015-2031 under both normal and 3 extreme weather. Regression analysis was used to estimate the Liberty's historic monthly peak 4 day model. The historic monthly peaks were net of all energy efficiency and distributed 5 6 generation load impacts. The monthly peak day model coefficients were then employed to develop seasonal peak forecasts at the Company's system level. The Liberty's system seasonal 7 peak forecasts were then split into Eastern and Western jurisdictions using the Company's 8 9 township sales information as well as July and December 2014 peak coincident Eastern and 10 Western PSA percent contributions.

11 The remainder of this report is organized as follows. First, the data used in the analysis is 12 described. Second, the regression model specifications are provided. Third, the results from the 13 regression models are discussed. Finally, the 2015-2031 seasonal forecast process is detailed.

14 Data

15 There were three data sources employed to perform the historic peak day modeling. These 16 sources include Liberty's hourly load and annual township sales, economic drivers for the 17 Company's service area, and daily weather information.

18 Hourly system load for the Company from October 2000 through April 2014 was supplied by 19 National Grid while historic system loads from May 2014 through June 2015 was provided by Liberty staff. The Company also supplied hourly Eastern and Western PSA loads for March 20 2014 through June 2015. The historic peak load data includes the impacts of energy efficiency 21 22 programs as well as distributed generation activities. Also, National Grid supplied annual sales 23 data for 21 townships from 1996 through 2013 and 2014 township volumes came from Liberty. 24 The 2014 township volumes collapsed 2 small townships into larger ones so the 1996 through 25 2013 data was aggregated as well down to 19 townships.

The system load and annual township sales information was utilized to create the dependent variables for the various regression models estimated. For the monthly peak day analysis, the maximum hourly load for each month from October 2000 through June 2015 was identified as the dependent variable. A total of 177 months of peaks are used in the peak day analysis. Each of the 19 townships has 19 years of annual sales in the annual usage analysis. Appendix A contains the historic monthly peak values for Liberty.

7 Annual employment and number of households for Rockingham and Grafton counties from 1970 8 through 2043 was purchased from Moody's Economy.com to develop an economic variable for 9 the monthly peak model. Employment and household values were summed across the two counties. Each series was then divided by the 2014 employment and household value to create 10 annual ratios. The annual ratios were then combined using a 60% weight for employment and 11 40% weight for households based on previous work performed by National Grid. The annual 12 ratios were converted to monthly numbers over the historic and forecast period by spreading the 13 annual growth rate into 12 equal parts. Appendix B reveals the annual total employment and 14 total households for Rockingham and Grafton counties from 2000 to 2031 along with the 15 16 development of the annual employment/household ratio term.

Weather information came from NOAA. Daily high temperature, low temperature, and dew point temperature information from the Concord New Hampshire Airport (WBAN #14745) was obtained for March 1994 through June 2015. Using the above mentioned weather elements, the temperature humidity index (THI) and heating degree days (HDD) were used in the peak day modeling analysis while annual cooling degree days (CDD) was used when modeling annual township sales. The discussion of how each specific weather element is computed resides in the model specification section of this report.

1 Specification of Models

2 This section first provides the specification of the peak day model followed by a description of

3 the annual township sales models.

4 Peak Day Model Specification

5 The monthly peak day usage was primarily driven by weather conditions. The most important

6 weather term was the temperature humidity index (THI). The daily THI was defined as follows:

7 THI = .55 * maximum temperature + .2 * average dew point temperature + 17.5

A weighted THI variable (WTHI) was used in the model to account for the heat buildup impact
on energy usage. The WTHI equaled:

10 WTHI = .7 * THI on the peak day + .2 * THI day before + .1 * THI two days before

In addition to the WTHI term, a summer period (June through September) indicator wasinteracted with the WTHI as follows:

13 WTHI_SUMMER = WTHI * summer period

14 To account for the increased saturation of air conditioning in the service territory, the

15 WTHI_SUMMER term defined above was also interacted with a time trend term (the value of

- the trend started at 1 in year 2000 and increased to 16 in year 2015) as described below:
- 17 WTHI_SUMMER_T = WTHI_SUMMER * time trend

The coefficient values of three THI terms defined above are expected to be positive in the regression model based on the assumption that the higher the WTHI value, the higher the peak day value will be. To account for peaks during the winter period, a heating degree day (HDD)

1	term was added based on the maximum daily temperature on the peak day, the day before the
2	peak, and two days prior to the peak (WTMAX). WTMAX equaled:
3	WTMAX = $.7*$ max temp on peak day + $2*$ max temp day before + $.1*$ max temp 2 days before
4	The term HDD was defined as
5	HDD = (55 - WTMAX), or 0 if the value of WTMAX was greater than or equal to 55
6	The expected value of the HDD coefficient in the regression equation is greater than zero which
7	suggests the peak day use rises as the temperature becomes colder. The economic variable
8	included in the peak day model was the weighted employment and household (EMP_HH) index
9	variable discussed in the previous section of this report. EMP_HH was defined as
10	$EMP_HH = .6 * employment index + .4 * household index$
11	The index portion of this variable was computed by dividing the actual employment and
12	household count variables by the 2014 values. It is expected that a positive relationship exists
13	between peak day use and the value of the index. The remaining variables included in the peak
14	day model were monthly indicators. These indicators take the value of one for a particular
15	month, zero otherwise. The monthly indicators included are as follows:

- 16 FEB = one if month is February, zero otherwise
- 17 MAR =one if month is March, zero otherwise
- 18 APR =one if month is April, zero otherwise
- 19 MAY =one if month is May, zero otherwise
- 20 JUN = one if month is June, zero otherwise
- 21 JUL = one if month is July, zero otherwise
- AUG = one if month is August, zero otherwise
- 23 SEP = one if month is September, zero otherwise

- 1 OCT = one if month is October, zero otherwise
- 2 NOV = one if month is November, zero otherwise
- 3 DEC = one if month is December, zero otherwise

4 The final Liberty Utilities' peak day model expressed in mathematical terms is as follows:

5	PeakDay Mw = a + b * WTHI + c * WTHI_SUMMER + d * WTHI_SUMMER_T
6	$+ e * HDD + f * EMP_HH + g * FEB + h * MAR + i * APR + j * MAY$
7	+ k * JUN + l * JUL + m * AUG + n * SEP + o * OCT + p * NOV
8	+q * DEC

9 Values of the estimated coefficients (a, b ..., q) will be presented and discussed in the next
10 section of the report.

11 Annual Township Sales Model Specification

The principal factor that influences annual sales at the township level has been a time trend that takes the value of one in 1996 and increases to nineteen in 2014. In order to flatten the change in township usage over the historic period, the time trend variable was expressed as a log function. The trend term variable was expressed as follows:

16

TIME = log(time trend value + 1)

17 The value of TIME is expected to have a positive coefficient value if the township experienced

sales growth from 1996 through 2014 and a negative value if township sales declined from 1996

19 through 2014. The other term included in the annual township sales models was annual cooling

20 degree days (CDD). CDD was based on the average daily temperature (daily maximum

temperature plus daily minimum temperature divided by two). Daily cooling degree days was

22 defined as:

CDD = (average temp - 60), or 0 if the average temp was less than or equal to 60.

The daily CDD values were then summed for the entire calendar year for final inclusion into the township models. It was expected that a positive relationship existed between CDD and annual sales. Township regression models that generated a negative coefficient for CDD had that variable removed from the analysis. The final Liberty's annual township models expressed in mathematical terms are as follows:

6

Annual kWh = a + b * TIME + c * CDD

- 7 Values of the estimated coefficients (a, b, and c) will be presented and discussed in the next
- 8 section of the report.
- 9

1 Regression Results

- 2 This section provides the overall model statistics as well as estimated coefficient values for the
- 3 peak day and annual township models. The peak day model adjusted R-Squared value was .8849
- 4 which means that nearly 89% of the monthly historic peak day variation was explained by the
- 5 model coefficients. The monthly peak day Mw model coefficients are as follows:

	Paramete	Standard		
Variable	Estimate	Error	t Value	Pr > t
INTERCEPT	-46.8292	25.40824	-1.84	0.0672
WTHI	0.76096	0.18505	4.11	<.0001
WTHI_SUMMER	3.25022	0.41489	7.83	<.0001
WTHI_SUMMER_T	0.01083	0.00333	3.25	0.0014
HDD	0.96334	0.22181	4.34	<.0001
EMP_HH	142.2944	23.1543	6.15	<.0001
FEB	-3.48033	2.66356	-1.31	0.1932
MAR	-5.34398	3.04075	-1.76	0.0808
APR	-12.9568	4.46431	-2.9	0.0042
MAY	0.71348	5.11165	0.14	0.8892
JUN	-245.913	32.64396	-7.53	<.0001
JUL	-239.727	33.12579	-7.24	<.0001
AUG	-239.712	32.70451	-7.33	<.0001
SEP	-247.548	31.59307	-7.84	<.0001
ОСТ	-8.24361	4.62948	-1.78	0.0769
NOV	-1.39235	3.8702	-0.36	0.7195
DEC	5.12178	2.8728	1.78	0.0765

6 The values of the WTHI terms have the expected positive coefficient signs and significant. The 7 HDD term also has a significant expected positive coefficient sign. Likewise, the EMP_HH term 8 has a significant expected positive coefficient sign. Only the MAY and NOV monthly terms are 9 not significant at the 80% level. The JUN through SEP indicators have large negative values to 10 offset the impact of the WTHI_SUMMER and WTHI_SUMMER_T terms.

11 The Eastern area annual kWh models by township appear as follows:

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 16 of 46

	Eastern Township Regression Results							
	Parameter	Standard						
Variable	Estimate	Error	t Value	Pr > t				
Town=Derry					R-Square	0.3529		
INTERCEPT	-3493264	2136944	-1.63	0.1216				
TIME	998428	404077	2.47	0.0251				
CDD	3572.64828	2104.691	1.7	0.109				
Town=Pelham					R-Square	0.834		
INTERCEPT	19232924	8360317	2.3	0.0352				
TIME	13322218	1580860	8.43	<.0001				
CDD	19574	8234.131	2.38	0.0303				
Tauna Calana MUL					D. Causana	0 2202		
Town=Salem, NH					R-Square	0.3383		
Intercept	256536329	22096/30	11.61	<.0001				
TIME	5279480	4045708	1.3	0.2116				
CDD	26369	21928	1.2	0.2478				
YEAR 2005	26898621	11744909	2.29	0.0369				
Town-Windham					P Squaro	0 7112		
	0225000	1520750	F 43	< 0001	K-Square	0.7112		
	8335088	1538/59	5.42	<.0001				
	1/32//2	290965	5.96	<.0001				
CDD	2586.33988	1515.534	1.71	0.1072				

1 Note that the Salem Township had a year 2005 indicator variable added to capture a spike in

2 annual usage for that year. All the CDD terms were significant at the 75% confidence level

3 which is reasonable for a nineteen year historic series.

4 Western area annual kWh models by township are displayed below. The Grafton Township had

5 a year 2002 indicator variable to capture a spike in usage for that year.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 17 of 46

	Western Township Regression Results #1							
	Parameter	Standard						
Variable	Estimate	Error	t Value	Pr > t				
Town=Acworth					R-Square	0.3069		
INTERCEPT	1130816	46617	24.26	<.0001				
TIME	56367	20488	2.75	0.0142				
Town=Alstead					R-Square	0.248		
INTERCEPT	9821812	750006	13.1	<.0001				
TIME	386451	141819	2.72	0.015				
CDD	8.50767	738.6861	0.01	0.991				
Town=Bath					R-Square	0.5497		
INTERCEPT	-24660	21340	-1.16	0.2648				
TIME	16285	4035.252	4.04	0.001				
CDD	35.25448	21.01818	1.68	0.1129				
Town=Canaan					R-Square	0.7445		
INTERCEPT	9263950	894915	10.35	<.0001	-			
TIME	1137419	169220	6.72	<.0001				
CDD	1121.183	881.4081	1.27	0.2215				
Town=Charlestown, NH					R-Square	0.6091		
INTERCEPT	8303211	6348242	1.31	0.2094				
TIME	6220352	1200395	5.18	<.0001				
CDD	2733.54913	6252.425	0.44	0.6678				
Town=Cornish					R-Square	0.6462		
INTERCEPT	573760	98296	5.84	<.0001	·			
TIME	87311	18587	4.7	0.0002				
CDD	221.99731	96.81239	2.29	0.0357				

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 18 of 46

	Western Township Regression Results #2							
	Parameter	Standard						
Variable	Estimate	Error	t Value	Pr > t				
Town=Enfield					R-Square	0.7826		
INTERCEPT	13648133	1157187	11.79	<.0001				
TIME	1630583	218814	7.45	<.0001				
CDD	1582.19763	1139.721	1.39	0.1841				
Town=Grafton, NH					R-Square	0.2942		
INTERCEPT	56985	6837.222	8.33	<.0001				
TIME	2810.65301	2932.623	0.96	0.3521				
YEAR 2002	25110	8432.559	2.98	0.0089				
Town=Hanover, NH					R-Square	0.7844		
INTERCEPT	68812079	11262322	6.11	<.0001				
TIME	16272278	2129603	7.64	<.0001				
CDD	11239	11092	1.01	0.326				
Town=Lebanon					R-Square	0.8111		
INTERCEPT	62402945	29707083	2.1	0.0519				
TIME	43867815	5617340	7.81	<.0001				
CDD	64124	29259	2.19	0.0435				
Town=Marlow					R-Square	0.0654		
INTERCEPT	28697	8313.087	3.45	0.0033				
TIME	2639.98599	1571.929	1.68	0.1125				
CDD	1.82563	8.18761	0.22	0.8264				

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 19 of 46

	Western Township Regression Results #3							
	Parameter	Standard						
Variable	Estimate	Error	t Value	Pr > t				
Town=Monroe, NH					R-Square	0.1007		
INTERCEPT	1694572	98442	17.21	<.0001				
TIME	35580	18614	1.91	0.074				
CDD	10.28049	96.95596	0.11	0.9169				
Town=Plainfield					R-Square	0.4213		
INTERCEPT	4783826	594055	8.05	<.0001	it oquare	011210		
TIME	365358	112330	3.25	0.005				
CDD	730.48021	585.0884	1.25	0.2298				
Town=Surry					R-Square	0.6197		
INTERCEPT	95895	51409	1.87	0.0806	•			
TIME	50362	9720.964	5.18	<.0001				
CDD	38.3967	50.633	0.76	0.4593				
Town=Walpole					R-Square	0.5513		
INTERCEPT	20871822	1584905	13.17	<.0001	- 1			
TIME	1289037	299691	4.3	0.0005				
CDD	1906.41256	1560.984	1.22	0.2397				

1 Except for the Grafton, all the western area townships had significant time trend coefficients at

2 the 90% confidence level. All of the larger usage Western Townships had CDD coefficients

3 significant at the 70% confidence level.

4 An explanation of how the peak day and township model coefficients are employed to generate

5 seasonal peak day forecasts appears in the next section.

1 Seasonal Forecast Development for 2015-2031

The peak day model coefficients detailed in the previous section of the report are used along with the economic driver forecast (shown in Appendix B) and normal/extreme weather to estimate seasonal peak forecasts for 2015 through 2031. The normal monthly WTHI and HDD values were computed by taking the average values for those terms during the October 2000 through June 2015 Company system monthly peak days. The extreme monthly WTHI and HDD values were extracted by taking the maximum values for those monthly terms during the October 2000 through June 2015 Company system monthly peak days. The normal and extreme monthly

9 WTHI and HDD values appear below.

Weather Values Used in Forecast									
Month	Normal	Extreme	Normal	Extreme					
	WTHI	WTHI	HDD	HDD					
January	28.2279	40.26	35.4714	44.9					
February	32.5364	40.23	29.5857	48.5					
March	37.9296	47.02	23.1071	33.3					
April	64.6857	77.505	3.8214	17.5					
Мау	74.7965	81.25	0	0					
June	80.3273	83.94	0	0					
July	81.4931	84.485	0	0					
August	80.4123	84.485	0	0					
September	76.7354	82.05	0	0					
October	65.3961	74.265	1.7929	10					
November	48.2085	60.85	11.0571	24.6					
December	35.0779	42.42	26.4714	38.3					

The normal and extreme Liberty system seasonal peak day forecasts appear in Tables 2 and 3 in the Summary of Results section of the report. The system peak day values were allocated to the Eastern and Western PSA regions by using the July and December 2014 coincident peak contribution proportions. The July Eastern coincident peak proportion was 49.855% while the Western proportion was 50.145%. The December Eastern coincident peak contribution was 47.495% compared to the Western value of 52.505%. Appendix C lists the Eastern and Western coincident peak contributions for March 2014 through June 2015. The individual township peaks were then calculated by utilizing the annual township sales regression models. For townships with CDD in the model, normal CDD value equaled 1027.93 and the extreme CDD took the value of 1265 which were computed based upon 1995 through 2014 Concord weather data. Once the annual township forecasts were completed, they were totaled so that individual township annual proportions under normal and extreme weather could be applied to the area peak values.

7 The Derry township results are shown below. The annual growth rates for 2017-2021 are much

8 larger than the overall system average.

	Derry Township Peaks									
		Summer Winter				Summer		Winter		
		Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	
	2015	0.8014		0.5968		1.0784		0.807		
	2016	0.8236	2.77%	0.6124	2.61%	1.1038	2.36%	0.8246	2.18%	
	2017	0.8437	2.44%	0.6249	2.04%	1.1266	2.07%	0.8386	1.70%	
	2018	0.861	2.05%	0.6352	1.65%	1.1462	1.74%	0.8497	1.32%	
	2019	0.877	1.86%	0.6448	1.51%	1.164	1.55%	0.8601	1.22%	
	2020	0.8927	1.79%	0.6546	1.52%	1.1818	1.53%	0.8709	1.26%	
	2021	0.9088	1.80%	0.6648	1.56%	1.1999	1.53%	0.8821	1.29%	
	2022	0.9249	1.77%	0.6747	1.49%	1.218	1.51%	0.8929	1.22%	
	2023	0.9406	1.70%	0.6843	1.42%	1.2357	1.45%	0.9034	1.18%	
	2024	0.9558	1.62%	0.6932	1.30%	1.2529	1.39%	0.9131	1.07%	
	2025	0.9706	1.55%	0.7019	1.26%	1.2695	1.32%	0.9226	1.04%	
	2026	0.985	1.48%	0.7102	1.18%	1.2858	1.28%	0.9317	0.99%	
	2027	0.9991	1.43%	0.7181	1.11%	1.3016	1.23%	0.9402	0.91%	
	2028	1.0129	1.38%	0.726	1.10%	1.3171	1.19%	0.9487	0.90%	
	2029	1.0265	1.34%	0.7335	1.03%	1.3324	1.16%	0.9569	0.86%	
	2030	1.0399	1.31%	0.7411	1.04%	1.3476	1.14%	0.9651	0.86%	
	2031	1.0534	1.30%	0.7485	1.00%	1.3627	1.12%	0.9732	0.84%	
2017	-2021	Avg	2.07%		1.71%		1.74%		1.39%	

9 The Pelham township results are provided next. The 2017-2021 annual growth rates for Pelham

10 are not as large as Derry but larger than the overall system.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 22 of 46

	Pelham Township Peaks										
		Summer		Winter	nter Summer				Winter		
		Normal		Normal		Extreme		Extreme			
year		Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth		
	2015	19.8959		14.8158		22.4264		16.7821			
	2016	20.3115	2.09%	15.1024	1.93%	22.8607	1.94%	17.0786	1.77%		
	2017	20.6797	1.81%	15.3182	1.43%	23.2462	1.69%	17.3023	1.31%		
	2018	20.9834	1.47%	15.4795	1.05%	23.5652	1.37%	17.4698	0.97%		
	2019	21.2551	1.29%	15.628	0.96%	23.8514	1.21%	17.6241	0.88%		
	2020	21.5264	1.28%	15.785	1.00%	24.137	1.20%	17.787	0.92%		
	2021	21.8085	1.31%	15.9534	1.07%	24.4333	1.23%	17.9614	0.98%		
	2022	22.0913	1.30%	16.1151	1.01%	24.7304	1.22%	18.1289	0.93%		
	2023	22.3691	1.26%	16.2732	0.98%	25.0222	1.18%	18.2925	0.90%		
	2024	22.6362	1.19%	16.4166	0.88%	25.3029	1.12%	18.441	0.81%		
	2025	22.8946	1.14%	16.5564	0.85%	25.5747	1.07%	18.5856	0.78%		
	2026	23.1476	1.11%	16.69	0.81%	25.8408	1.04%	18.7239	0.74%		
	2027	23.3927	1.06%	16.8149	0.75%	26.0987	1.00%	18.8533	0.69%		
	2028	23.6337	1.03%	16.9394	0.74%	26.3524	0.97%	18.9821	0.68%		
	2029	23.8711	1.00%	17.0581	0.70%	26.6021	0.95%	19.1049	0.65%		
	2030	24.1076	0.99%	17.1795	0.71%	26.851	0.94%	19.2304	0.66%		
	2031	24.3433	0.98%	17.2979	0.69%	27.0991	0.92%	19.3528	0.64%		
2017	-2021	Avg	1.47%		1.13%		1.38%		1.03%		

- 1 Salem forecasts are displayed next. The Salem annual growth rates are lower than the overall
- 2 system rates and since Salem contributes the most to Eastern PSA total, Salem pushes down the
- 3 Eastern PSA numbers that appear in Tables 4 through 7 in the Summary of Results section.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 23 of 46

	Salem Township Peaks									
	Summer		Winter		Summer		Winter			
	Normal		Normal		Extreme		Extreme			
year	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth		
2015	74.6197		55.5665		81.1521		60.7278			
2016	75.6539	1.39%	56.2518	1.23%	82.1877	1.28%	61.4004	1.11%		
2017	76.5229	1.15%	56.6835	0.77%	83.0602	1.06%	61.8223	0.69%		
2018	77.1655	0.84%	56.9251	0.43%	83.7084	0.78%	62.0562	0.38%		
2019	77.7035	0.70%	57.1323	0.36%	84.2537	0.65%	62.2563	0.32%		
2020	78.2524	0.71%	57.3813	0.44%	84.81	0.66%	62.498	0.39%		
2021	78.8512	0.77%	57.6815	0.52%	85.4156	0.71%	62.7907	0.47%		
2022	79.4623	0.78%	57.9661	0.49%	86.0341	0.72%	63.0682	0.44%		
2023	80.0641	0.76%	58.2457	0.48%	86.6432	0.71%	63.3408	0.43%		
2024	80.6358	0.71%	58.4802	0.40%	87.223	0.67%	63.569	0.36%		
2025	81.1842	0.68%	58.7088	0.39%	87.78	0.64%	63.7915	0.35%		
2026	81.7208	0.66%	58.9226	0.36%	88.3254	0.62%	63.9995	0.33%		
2027	82.2363	0.63%	59.1124	0.32%	88.8501	0.59%	64.1838	0.29%		
2028	82.7441	0.62%	59.3065	0.33%	89.367	0.58%	64.3726	0.29%		
2029	83.2451	0.61%	59.4863	0.30%	89.8772	0.57%	64.5473	0.27%		
2030	83.7486	0.60%	59.6807	0.33%	90.3904	0.57%	64.7366	0.29%		
2031	84.2549	0.60%	59.8698	0.32%	90.9066	0.57%	64.9208	0.28%		
2017-2021	Avg	0.85%		0.51%		0.79%		0.45%		

- 1 The last Eastern PSA township, Windham, forecasts are displayed next. The annual growth rate
- 2 in peaks for Windham from 2017-2021 are somewhat higher than the overall system average.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 24 of 46

	Windham Township Peaks										
		Summer		Winter		Summer		Winter			
		Normal		Normal		Extreme		Extreme			
year		Peak Mw	Growth								
	2015	4.0505		3.0163		4.4777		3.3508			
	2016	4.1236	1.80%	3.0661	1.65%	4.5529	1.68%	3.4013	1.51%		
	2017	4.1873	1.54%	3.1017	1.16%	4.6185	1.44%	3.4376	1.07%		
	2018	4.2383	1.22%	3.1266	0.80%	4.6713	1.14%	3.463	0.74%		
	2019	4.2831	1.06%	3.1492	0.72%	4.7179	1.00%	3.4861	0.67%		
	2020	4.328	1.05%	3.1737	0.78%	4.7646	0.99%	3.5111	0.72%		
	2021	4.3754	1.10%	3.2007	0.85%	4.8137	1.03%	3.5386	0.78%		
	2022	4.4231	1.09%	3.2266	0.81%	4.8631	1.03%	3.565	0.75%		
	2023	4.47	1.06%	3.2519	0.78%	4.9117	1.00%	3.5907	0.72%		
	2024	4.515	1.01%	3.2744	0.69%	4.9584	0.95%	3.6137	0.64%		
	2025	4.5584	0.96%	3.2964	0.67%	5.0034	0.91%	3.6361	0.62%		
	2026	4.6008	0.93%	3.3173	0.63%	5.0475	0.88%	3.6574	0.59%		
	2027	4.6419	0.89%	3.3366	0.58%	5.0902	0.85%	3.6771	0.54%		
	2028	4.6823	0.87%	3.356	0.58%	5.1322	0.83%	3.6968	0.54%		
	2029	4.7221	0.85%	3.3743	0.55%	5.1735	0.80%	3.7155	0.51%		
	2030	4.7618	0.84%	3.3933	0.56%	5.2149	0.80%	3.7348	0.52%		
	2031	4.8015	0.83%	3.4119	0.55%	5.2562	0.79%	3.7537	0.51%		
2017-2021 Avg 1.					0.88%		1.15%		0.81%		

- 1 The Western Township forecasts are shown next starting with Acworth. The Acworth annual
- 2 growth rates are much lower than the overall system for 2017-2021.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 25 of 46

	Acworth Township Peaks										
		Summer		Winter		Summer		Winter			
		Normal		Normal		Extreme		Extreme			
year		Peak Mw	Growth								
	2015	0.258		0.2111		0.2726		0.2242			
	2016	0.2608	1.09%	0.2131	0.95%	0.2754	1.03%	0.2261	0.85%		
	2017	0.2631	0.88%	0.2142	0.52%	0.2776	0.80%	0.2271	0.44%		
	2018	0.2646	0.57%	0.2146	0.19%	0.2791	0.54%	0.2274	0.13%		
	2019	0.2658	0.45%	0.2148	0.09%	0.2803	0.43%	0.2276	0.09%		
	2020	0.2671	0.49%	0.2153	0.23%	0.2815	0.43%	0.228	0.18%		
	2021	0.2685	0.52%	0.2159	0.28%	0.2829	0.50%	0.2286	0.26%		
	2022	0.2701	0.60%	0.2165	0.28%	0.2844	0.53%	0.2292	0.26%		
	2023	0.2715	0.52%	0.2171	0.28%	0.2859	0.53%	0.2297	0.22%		
	2024	0.273	0.55%	0.2176	0.23%	0.2873	0.49%	0.2301	0.17%		
	2025	0.2743	0.48%	0.218	0.18%	0.2886	0.45%	0.2305	0.17%		
	2026	0.2756	0.47%	0.2184	0.18%	0.2899	0.45%	0.2309	0.17%		
	2027	0.2769	0.47%	0.2188	0.18%	0.2912	0.45%	0.2312	0.13%		
	2028	0.2782	0.47%	0.2191	0.14%	0.2924	0.41%	0.2315	0.13%		
	2029	0.2794	0.43%	0.2194	0.14%	0.2937	0.44%	0.2318	0.13%		
	2030	0.2807	0.47%	0.2198	0.18%	0.2949	0.41%	0.2322	0.17%		
	2031	0.2819	0.43%	0.2202	0.18%	0.2962	0.44%	0.2325	0.13%		
2017	-2021	Avg	0.59%		0.26%		0.54%		0.22%		

- 1 Alstead township forecast appears next. As the case with Acworth, Alstead annual growth in
- 2 peak is quite a bit lower than the system average.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 26 of 46

	Alstead Township Peaks									
		Summer		Winter		Summer		Winter		
		Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth							
	2015	2.1784		1.783		2.3025		1.8937		
	2016	2.2014	1.06%	1.7991	0.90%	2.3247	0.96%	1.9088	0.80%	
	2017	2.2199	0.84%	1.8073	0.46%	2.3426	0.77%	1.9164	0.40%	
	2018	2.232	0.55%	1.8097	0.13%	2.3544	0.50%	1.9183	0.10%	
	2019	2.2413	0.42%	1.8112	0.08%	2.3635	0.39%	1.9195	0.06%	
	2020	2.2512	0.44%	1.8143	0.17%	2.3732	0.41%	1.9221	0.14%	
	2021	2.2627	0.51%	1.8192	0.27%	2.3844	0.47%	1.9265	0.23%	
	2022	2.2747	0.53%	1.8238	0.25%	2.3963	0.50%	1.9307	0.22%	
	2023	2.2867	0.53%	1.8284	0.25%	2.408	0.49%	1.9348	0.21%	
	2024	2.2979	0.49%	1.8317	0.18%	2.419	0.46%	1.9377	0.15%	
	2025	2.3086	0.47%	1.8349	0.17%	2.4296	0.44%	1.9406	0.15%	
	2026	2.3192	0.46%	1.8379	0.16%	2.44	0.43%	1.9432	0.13%	
	2027	2.3292	0.43%	1.8402	0.13%	2.4499	0.41%	1.9452	0.10%	
	2028	2.3391	0.43%	1.8427	0.14%	2.4598	0.40%	1.9474	0.11%	
	2029	2.349	0.42%	1.8449	0.12%	2.4696	0.40%	1.9493	0.10%	
	2030	2.3591	0.43%	1.8477	0.15%	2.4795	0.40%	1.9518	0.13%	
	2031	2.3693	0.43%	1.8504	0.15%	2.4897	0.41%	1.9542	0.12%	
2017-2021 Avg 0.56					0.22%		0.51%		0.19%	

- 1 The Bath township forecasts are displayed below. The annual growth in the Bath peaks from
- 2 2017-2021 is higher than the system average although the peaks are very small.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 27 of 46

				Bath Towns	ship Peaks				
		Summer		Winter		Summer		Winter	
		Normal		Normal		Extreme		Extreme	
year		Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth
	2015	0.0121		0.0099		0.0145		0.012	
	2016	0.0124	2.48%	0.0101	2.02%	0.0148	2.07%	0.0122	1.67%
	2017	0.0126	1.61%	0.0103	1.98%	0.0151	2.03%	0.0123	0.82%
	2018	0.0128	1.59%	0.0104	0.97%	0.0153	1.32%	0.0124	0.81%
	2019	0.013	1.56%	0.0105	0.96%	0.0154	0.65%	0.0125	0.81%
	2020	0.0131	0.77%	0.0106	0.95%	0.0156	1.30%	0.0126	0.80%
	2021	0.0133	1.53%	0.0107	0.94%	0.0158	1.28%	0.0128	1.59%
	2022	0.0135	1.50%	0.0108	0.93%	0.016	1.27%	0.0129	0.78%
	2023	0.0136	0.74%	0.0109	0.93%	0.0162	1.25%	0.013	0.78%
	2024	0.0138	1.47%	0.011	0.92%	0.0163	0.62%	0.0131	0.77%
	2025	0.014	1.45%	0.0111	0.91%	0.0165	1.23%	0.0132	0.76%
	2026	0.0141	0.71%	0.0112	0.90%	0.0167	1.21%	0.0133	0.76%
	2027	0.0143	1.42%	0.0113	0.89%	0.0168	0.60%	0.0134	0.75%
	2028	0.0144	0.70%	0.0114	0.88%	0.017	1.19%	0.0135	0.75%
	2029	0.0146	1.39%	0.0114	0.00%	0.0172	1.18%	0.0135	0.00%
	2030	0.0147	0.68%	0.0115	0.88%	0.0173	0.58%	0.0136	0.74%
	2031	0.0149	1.36%	0.0116	0.87%	0.0175	1.16%	0.0137	0.74%
2017	-2021	Avg	1.45%		1.19%		1.35%		0.98%

- 1 Forecasts for the Canaan Township appear below. The annual growth rate in Canaan is less than
- 2 the system average during the 2017-2021 years.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 28 of 46

	Canaan Township Peaks									
		Summer		Winter		Summer		Winter		
		Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth							
	2015	2.7469		2.2482		2.9584		2.4332		
	2016	2.7819	1.27%	2.2735	1.13%	2.9932	1.18%	2.4577	1.01%	
	2017	2.811	1.05%	2.2886	0.66%	3.0222	0.97%	2.4724	0.60%	
	2018	2.8319	0.74%	2.2961	0.33%	3.0432	0.69%	2.4796	0.29%	
	2019	2.8491	0.61%	2.3024	0.27%	3.0606	0.57%	2.4856	0.24%	
	2020	2.8668	0.62%	2.3105	0.35%	3.0785	0.58%	2.4934	0.31%	
	2021	2.8864	0.68%	2.3207	0.44%	3.0982	0.64%	2.5033	0.40%	
	2022	2.9066	0.70%	2.3304	0.42%	3.1186	0.66%	2.5126	0.37%	
	2023	2.9265	0.68%	2.3399	0.41%	3.1386	0.64%	2.5219	0.37%	
	2024	2.9454	0.65%	2.3478	0.34%	3.1577	0.61%	2.5294	0.30%	
	2025	2.9634	0.61%	2.3554	0.32%	3.176	0.58%	2.5368	0.29%	
	2026	2.9812	0.60%	2.3625	0.30%	3.194	0.57%	2.5437	0.27%	
	2027	2.9982	0.57%	2.3687	0.26%	3.2113	0.54%	2.5496	0.23%	
	2028	3.015	0.56%	2.3751	0.27%	3.2283	0.53%	2.5558	0.24%	
	2029	3.0316	0.55%	2.381	0.25%	3.2452	0.52%	2.5615	0.22%	
	2030	3.0483	0.55%	2.3876	0.28%	3.2622	0.52%	2.5679	0.25%	
	2031	3.0652	0.55%	2.3939	0.26%	3.2794	0.53%	2.574	0.24%	
2017	-2021	Avg	0.75%		0.42%		0.70%		0.37%	

- 1 The Charlestown township forecasts are shown next below. The annual growth rate in peak
- 2 forecasts is higher than the system average during the 2017-2021 years.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 29 of 46

	Charlestown Township Peaks										
	Summer Winter Summer Winter										
		Normal		Normal		Extreme		Extreme			
year		Peak Mw	Growth								
	2015	5.9475		4.8677		6.4205		5.2807			
	2016	6.0583	1.86%	4.9509	1.71%	6.5329	1.75%	5.3642	1.58%		
	2017	6.1551	1.60%	5.0111	1.22%	6.6315	1.51%	5.425	1.13%		
	2018	6.2329	1.26%	5.0536	0.85%	6.7113	1.20%	5.4684	0.80%		
	2019	6.3014	1.10%	5.0923	0.77%	6.782	1.05%	5.5079	0.72%		
	2020	6.37	1.09%	5.1339	0.82%	6.8526	1.04%	5.5502	0.77%		
	2021	6.442	1.13%	5.1794	0.89%	6.9265	1.08%	5.5964	0.83%		
	2022	6.5144	1.12%	5.223	0.84%	7.0008	1.07%	5.6405	0.79%		
	2023	6.5855	1.09%	5.2656	0.82%	7.0737	1.04%	5.6836	0.76%		
	2024	6.6535	1.03%	5.3035	0.72%	7.1436	0.99%	5.7222	0.68%		
	2025	6.7192	0.99%	5.3405	0.70%	7.211	0.94%	5.7597	0.66%		
	2026	6.7834	0.96%	5.3756	0.66%	7.277	0.92%	5.7953	0.62%		
	2027	6.8454	0.91%	5.4081	0.60%	7.3409	0.88%	5.8284	0.57%		
	2028	6.9063	0.89%	5.4406	0.60%	7.4036	0.85%	5.8614	0.57%		
	2029	6.9663	0.87%	5.4714	0.57%	7.4653	0.83%	5.8926	0.53%		
	2030	7.0262	0.86%	5.5031	0.58%	7.5269	0.83%	5.9249	0.55%		
	2031	7.0859	0.85%	5.5341	0.56%	7.5884	0.82%	5.9562	0.53%		
2017	-2021	Avg	1.27%		0.92%		1.20%		0.87%		

- 1 The Cornish township forecast numbers are displayed next. The annual growth in Cornish peaks
- 2 is less than the 2017-2021 system average growth.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 30 of 46

	Cornish Township Peaks								
		Summer		Winter		Summer		Winter	
		Normal		Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	0.2113		0.173		0.2343		0.1927	
	2016	0.214	1.28%	0.1749	1.10%	0.2371	1.20%	0.1946	0.99%
	2017	0.2163	1.07%	0.1761	0.69%	0.2393	0.93%	0.1958	0.62%
	2018	0.2179	0.74%	0.1766	0.28%	0.241	0.71%	0.1963	0.26%
	2019	0.2192	0.60%	0.1771	0.28%	0.2423	0.54%	0.1968	0.25%
	2020	0.2205	0.59%	0.1777	0.34%	0.2437	0.58%	0.1974	0.30%
	2021	0.2221	0.73%	0.1785	0.45%	0.2453	0.66%	0.1982	0.41%
	2022	0.2236	0.68%	0.1793	0.45%	0.2468	0.61%	0.1989	0.35%
	2023	0.2251	0.67%	0.18	0.39%	0.2484	0.65%	0.1996	0.35%
	2024	0.2266	0.67%	0.1806	0.33%	0.2499	0.60%	0.2002	0.30%
	2025	0.228	0.62%	0.1812	0.33%	0.2513	0.56%	0.2007	0.25%
	2026	0.2293	0.57%	0.1817	0.28%	0.2527	0.56%	0.2013	0.30%
	2027	0.2306	0.57%	0.1822	0.28%	0.2541	0.55%	0.2017	0.20%
	2028	0.2319	0.56%	0.1827	0.27%	0.2554	0.51%	0.2022	0.25%
	2029	0.2332	0.56%	0.1832	0.27%	0.2567	0.51%	0.2026	0.20%
	2030	0.2345	0.56%	0.1837	0.27%	0.2581	0.55%	0.2031	0.25%
	2031	0.2358	0.55%	0.1842	0.27%	0.2594	0.50%	0.2036	0.25%
2017	-2021	Avg	0.76%		0.41%		0.69%		0.37%

- 1 Enfield Township seasonal peak forecasts are listed next. Much like Cornish, the annual 2017-
- 2 2020 growth in Enfield peaks is lower than the system average numbers.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 31 of 46

	Enfield Township Peaks								
		Summer		Winter		Summer		Winter	
		Normal		Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	4.0055		3.2783		4.3113		3.5459	
	2016	4.0564	1.27%	3.3149	1.12%	4.3618	1.17%	3.5815	1.00%
	2017	4.0985	1.04%	3.3368	0.66%	4.4038	0.96%	3.6026	0.59%
	2018	4.1288	0.74%	3.3476	0.32%	4.4342	0.69%	3.613	0.29%
	2019	4.1536	0.60%	3.3566	0.27%	4.4592	0.56%	3.6215	0.24%
	2020	4.1791	0.61%	3.3682	0.35%	4.4851	0.58%	3.6326	0.31%
	2021	4.2075	0.68%	3.3829	0.44%	4.5137	0.64%	3.6469	0.39%
	2022	4.2367	0.69%	3.3969	0.41%	4.5431	0.65%	3.6603	0.37%
	2023	4.2655	0.68%	3.4106	0.40%	4.5721	0.64%	3.6736	0.36%
	2024	4.2929	0.64%	3.4219	0.33%	4.5997	0.60%	3.6845	0.30%
	2025	4.319	0.61%	3.4328	0.32%	4.6262	0.58%	3.6951	0.29%
	2026	4.3447	0.60%	3.4431	0.30%	4.6522	0.56%	3.7049	0.27%
	2027	4.3693	0.57%	3.4519	0.26%	4.6772	0.54%	3.7135	0.23%
	2028	4.3937	0.56%	3.4612	0.27%	4.7018	0.53%	3.7224	0.24%
	2029	4.4177	0.55%	3.4697	0.25%	4.7262	0.52%	3.7306	0.22%
	2030	4.4419	0.55%	3.4791	0.27%	4.7508	0.52%	3.7396	0.24%
	2031	4.4664	0.55%	3.4882	0.26%	4.7757	0.52%	3.7485	0.24%
2017	-2021	Avg	0.74%		0.41%		0.70%		0.37%

- 1 Grafton Township forecast results are provided below. Annual growth in Grafton peaks is lower
- 2 than the system average.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 32 of 46

	Grafton Township Peaks									
		Summer		Winter		Summer		Winter		
		Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth							
	2015	0.013		0.0106		0.0137		0.0113		
	2016	0.0131	0.77%	0.0107	0.94%	0.0138	0.73%	0.0114	0.88%	
	2017	0.0132	0.76%	0.0108	0.93%	0.014	1.45%	0.0114	0.00%	
	2018	0.0133	0.76%	0.0108	0.00%	0.014	0.00%	0.0114	0.00%	
	2019	0.0134	0.75%	0.0108	0.00%	0.0141	0.71%	0.0114	0.00%	
	2020	0.0134	0.00%	0.0108	0.00%	0.0142	0.71%	0.0115	0.88%	
	2021	0.0135	0.75%	0.0109	0.93%	0.0142	0.00%	0.0115	0.00%	
	2022	0.0136	0.74%	0.0109	0.00%	0.0143	0.70%	0.0115	0.00%	
	2023	0.0136	0.00%	0.0109	0.00%	0.0144	0.70%	0.0115	0.00%	
	2024	0.0137	0.74%	0.0109	0.00%	0.0144	0.00%	0.0116	0.87%	
	2025	0.0138	0.73%	0.011	0.92%	0.0145	0.69%	0.0116	0.00%	
	2026	0.0139	0.72%	0.011	0.00%	0.0146	0.69%	0.0116	0.00%	
	2027	0.0139	0.00%	0.011	0.00%	0.0146	0.00%	0.0116	0.00%	
	2028	0.014	0.72%	0.011	0.00%	0.0147	0.68%	0.0116	0.00%	
	2029	0.014	0.00%	0.011	0.00%	0.0148	0.68%	0.0117	0.86%	
	2030	0.0141	0.71%	0.011	0.00%	0.0148	0.00%	0.0117	0.00%	
	2031	0.0142	0.71%	0.0111	0.91%	0.0149	0.68%	0.0117	0.00%	
2017	-2021	Avg	0.61%		0.37%		0.58%		0.18%	

- 1 The Hanover township forecasts appear next. As one of the larger Western PSA townships, the
- 2 Hanover annual growth rate from 2017-2021 is slightly lower than the system average growth.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 33 of 46

	Hanover Township Peaks								
		Summer		Winter		Summer		Winter	
		Normal		Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	25.7101		21.0425		27.7262		22.804	
	2016	26.0903	1.48%	21.3215	1.33%	28.1078	1.38%	23.0794	1.21%
	2017	26.4132	1.24%	21.504	0.86%	28.4332	1.16%	23.2601	0.78%
	2018	26.6575	0.92%	21.614	0.51%	28.6811	0.87%	23.3693	0.47%
	2019	26.8653	0.78%	21.7103	0.45%	28.8932	0.74%	23.4652	0.41%
	2020	27.0762	0.79%	21.822	0.51%	29.1084	0.74%	23.5761	0.47%
	2021	27.3041	0.84%	21.9528	0.60%	29.3401	0.80%	23.7057	0.55%
	2022	27.5358	0.85%	22.0772	0.57%	29.5756	0.80%	23.8291	0.52%
	2023	27.7639	0.83%	22.1994	0.55%	29.8075	0.78%	23.9502	0.51%
	2024	27.9813	0.78%	22.304	0.47%	30.0289	0.74%	24.0541	0.43%
	2025	28.1903	0.75%	22.4061	0.46%	30.2421	0.71%	24.1553	0.42%
	2026	28.3949	0.73%	22.5022	0.43%	30.4509	0.69%	24.2507	0.39%
	2027	28.5919	0.69%	22.5887	0.38%	30.6522	0.66%	24.3367	0.35%
	2028	28.786	0.68%	22.6767	0.39%	30.8504	0.65%	24.4241	0.36%
	2029	28.9774	0.66%	22.7589	0.36%	31.046	0.63%	24.5058	0.33%
	2030	29.1694	0.66%	22.8464	0.38%	31.2424	0.63%	24.5927	0.35%
	2031	29.3622	0.66%	22.9316	0.37%	31.4395	0.63%	24.6773	0.34%
2017-2021 Avg 0.9					0.59%		0.88%		0.54%

- 1 Lebanon township seasonal peak forecasts are listed next. As the largest Western PSA township,
- 2 Lebanon peak growth from 2017-2021 is somewhat higher than the overall system growth.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 34 of 46

	Lebanon Township Peaks								
		Summer		Winter		Summer		Winter	
		Normal		Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	51.8282		42.4189		57.9485		47.661	
	2016	52.6975	1.68%	43.0654	1.52%	58.8428	1.54%	48.316	1.37%
	2017	53.448	1.42%	43.5142	1.04%	59.6163	1.31%	48.7698	0.94%
	2018	54.0364	1.10%	43.8128	0.69%	60.2245	1.02%	49.0708	0.62%
	2019	54.5474	0.95%	44.0807	0.61%	60.7543	0.88%	49.3407	0.55%
	2020	55.0619	0.94%	44.377	0.67%	61.2879	0.88%	49.6396	0.61%
	2021	55.6081	0.99%	44.7096	0.75%	61.8534	0.92%	49.9753	0.68%
	2022	56.1599	0.99%	45.027	0.71%	62.425	0.92%	50.2958	0.64%
	2023	56.7022	0.97%	45.3377	0.69%	62.9867	0.90%	50.6095	0.62%
	2024	57.2205	0.91%	45.6107	0.60%	63.5243	0.85%	50.8848	0.54%
	2025	57.7198	0.87%	45.8765	0.58%	64.0427	0.82%	51.153	0.53%
	2026	58.2082	0.85%	46.1283	0.55%	64.5501	0.79%	51.4069	0.50%
	2027	58.6794	0.81%	46.359	0.50%	65.0399	0.76%	51.6394	0.45%
	2028	59.143	0.79%	46.591	0.50%	65.5219	0.74%	51.8733	0.45%
	2029	59.5997	0.77%	46.8097	0.47%	65.9968	0.72%	52.0937	0.42%
	2030	60.0563	0.77%	47.038	0.49%	66.472	0.72%	52.3239	0.44%
	2031	60.5131	0.76%	47.2603	0.47%	66.9475	0.72%	52.548	0.43%
2017	-2021	Avg	1.10%		0.76%		1.02%		0.69%

- 1 Marlow township forecast values are shown next. The Marlow growth is lower than the system
- 2 average during the 2017-2021 years.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 35 of 46

	Marlow Township Peaks									
		Summer		Winter		Summer		Winter		
		Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth							
	2015	0.0076		0.0063		0.0082		0.0067		
	2016	0.0077	1.32%	0.0063	0.00%	0.0083	1.22%	0.0068	1.49%	
	2017	0.0078	1.30%	0.0064	1.59%	0.0083	0.00%	0.0068	0.00%	
	2018	0.0079	1.28%	0.0064	0.00%	0.0084	1.20%	0.0068	0.00%	
	2019	0.0079	0.00%	0.0064	0.00%	0.0084	0.00%	0.0068	0.00%	
	2020	0.008	1.27%	0.0064	0.00%	0.0085	1.19%	0.0069	1.47%	
	2021	0.008	0.00%	0.0064	0.00%	0.0085	0.00%	0.0069	0.00%	
	2022	0.0081	1.25%	0.0065	1.56%	0.0086	1.18%	0.0069	0.00%	
	2023	0.0081	0.00%	0.0065	0.00%	0.0086	0.00%	0.0069	0.00%	
	2024	0.0082	1.23%	0.0065	0.00%	0.0087	1.16%	0.007	1.45%	
	2025	0.0082	0.00%	0.0065	0.00%	0.0087	0.00%	0.007	0.00%	
	2026	0.0082	0.00%	0.0065	0.00%	0.0088	1.15%	0.007	0.00%	
	2027	0.0083	1.22%	0.0066	1.54%	0.0088	0.00%	0.007	0.00%	
	2028	0.0083	0.00%	0.0066	0.00%	0.0089	1.14%	0.007	0.00%	
	2029	0.0084	1.20%	0.0066	0.00%	0.0089	0.00%	0.007	0.00%	
	2030	0.0084	0.00%	0.0066	0.00%	0.0089	0.00%	0.007	0.00%	
	2031	0.0085	1.19%	0.0066	0.00%	0.009	1.12%	0.0071	1.43%	
2017	-2021	Avg	0.78%		0.32%		0.48%		0.29%	

- 1 Monroe township peak forecasts are shown below. The annual growth in Monroe Township is
- 2 much lower than the system average during the 2017-2021 years.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 36 of 46

	Monroe Township Peaks								
		Summer		Winter		Summer		Winter	
	Normal			Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	0.3589		0.2937		0.3798		0.3124	
	2016	0.3624	0.98%	0.2962	0.85%	0.3832	0.90%	0.3146	0.70%
	2017	0.3652	0.77%	0.2973	0.37%	0.3859	0.70%	0.3157	0.35%
	2018	0.367	0.49%	0.2975	0.07%	0.3875	0.41%	0.3158	0.03%
	2019	0.3683	0.35%	0.2976	0.03%	0.3888	0.34%	0.3158	0.00%
	2020	0.3697	0.38%	0.2979	0.10%	0.3902	0.36%	0.316	0.06%
	2021	0.3713	0.43%	0.2986	0.23%	0.3918	0.41%	0.3165	0.16%
	2022	0.3731	0.48%	0.2992	0.20%	0.3935	0.43%	0.317	0.16%
	2023	0.3749	0.48%	0.2997	0.17%	0.3952	0.43%	0.3176	0.19%
	2024	0.3765	0.43%	0.3001	0.13%	0.3968	0.40%	0.3179	0.09%
	2025	0.3781	0.42%	0.3005	0.13%	0.3984	0.40%	0.3182	0.09%
	2026	0.3796	0.40%	0.3008	0.10%	0.3999	0.38%	0.3185	0.09%
	2027	0.3811	0.40%	0.3011	0.10%	0.4013	0.35%	0.3186	0.03%
	2028	0.3826	0.39%	0.3014	0.10%	0.4027	0.35%	0.3189	0.09%
	2029	0.384	0.37%	0.3016	0.07%	0.4042	0.37%	0.319	0.03%
	2030	0.3855	0.39%	0.3019	0.10%	0.4056	0.35%	0.3193	0.09%
	2031	0.387	0.39%	0.3022	0.10%	0.4071	0.37%	0.3196	0.09%
2017	-2021	Avg	0.49%		0.16%		0.45%		0.12%

- 1 Plainfield township forecasts appear next. The Plainfield growth rate is peak form 2017-2021 is
- 2 much lower than the system average over this time frame.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 37 of 46

	Plainfield Township Peaks								
	Summer			Winter		Summer		Winter	
	Normal			Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	1.3155		1.0767		1.4264		1.1732	
	2016	1.3306	1.15%	1.0874	0.99%	1.4414	1.05%	1.1835	0.88%
	2017	1.343	0.93%	1.0934	0.55%	1.4537	0.85%	1.1892	0.48%
	2018	1.3514	0.63%	1.0957	0.21%	1.4621	0.58%	1.1913	0.18%
	2019	1.3582	0.50%	1.0975	0.16%	1.4689	0.47%	1.1929	0.13%
	2020	1.3652	0.52%	1.1003	0.26%	1.476	0.48%	1.1954	0.21%
	2021	1.3732	0.59%	1.104	0.34%	1.484	0.54%	1.199	0.30%
	2022	1.3814	0.60%	1.1076	0.33%	1.4923	0.56%	1.2023	0.28%
	2023	1.3896	0.59%	1.1111	0.32%	1.5005	0.55%	1.2057	0.28%
	2024	1.3974	0.56%	1.1139	0.25%	1.5083	0.52%	1.2082	0.21%
	2025	1.4048	0.53%	1.1165	0.23%	1.5158	0.50%	1.2107	0.21%
	2026	1.412	0.51%	1.119	0.22%	1.5232	0.49%	1.213	0.19%
	2027	1.419	0.50%	1.1211	0.19%	1.5302	0.46%	1.2149	0.16%
	2028	1.4259	0.49%	1.1233	0.20%	1.5372	0.46%	1.217	0.17%
	2029	1.4327	0.48%	1.1252	0.17%	1.5441	0.45%	1.2188	0.15%
	2030	1.4396	0.48%	1.1275	0.20%	1.5511	0.45%	1.2209	0.17%
	2031	1.4465	0.48%	1.1297	0.20%	1.5582	0.46%	1.223	0.17%
2017	-2021	Avg	0.64%		0.31%		0.59%		0.26%

- 1 Surry Township forecast values are listed next. The annual growth in the Surry peak from 2017-
- 2 2021 is higher than the system average.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 38 of 46

	Surry Township Peaks								
		Summer		Winter		Summer		Winter	
	Normal			Normal		Extreme		Extreme	
year		Peak Mw	Growth						
	2015	0.0571		0.0468		0.0623		0.0512	
	2016	0.0581	1.75%	0.0475	1.50%	0.0633	1.61%	0.052	1.56%
	2017	0.059	1.55%	0.048	1.05%	0.0641	1.26%	0.0525	0.96%
	2018	0.0596	1.02%	0.0483	0.63%	0.0648	1.09%	0.0528	0.57%
	2019	0.0602	1.01%	0.0487	0.83%	0.0654	0.93%	0.0531	0.57%
	2020	0.0608	1.00%	0.049	0.62%	0.066	0.92%	0.0535	0.75%
	2021	0.0614	0.99%	0.0494	0.82%	0.0667	1.06%	0.0539	0.75%
	2022	0.062	0.98%	0.0497	0.61%	0.0673	0.90%	0.0542	0.56%
	2023	0.0626	0.97%	0.0501	0.80%	0.0679	0.89%	0.0546	0.74%
	2024	0.0632	0.96%	0.0504	0.60%	0.0685	0.88%	0.0549	0.55%
	2025	0.0638	0.95%	0.0507	0.60%	0.0691	0.88%	0.0552	0.55%
	2026	0.0643	0.78%	0.051	0.59%	0.0697	0.87%	0.0555	0.54%
	2027	0.0649	0.93%	0.0513	0.59%	0.0702	0.72%	0.0558	0.54%
	2028	0.0654	0.77%	0.0515	0.39%	0.0708	0.85%	0.056	0.36%
	2029	0.0659	0.76%	0.0518	0.58%	0.0713	0.71%	0.0563	0.54%
	2030	0.0664	0.76%	0.052	0.39%	0.0718	0.70%	0.0565	0.36%
	2031	0.0669	0.75%	0.0523	0.58%	0.0724	0.84%	0.0568	0.53%
2017-2021 Avg		1.14%		0.80%		1.07%		0.73%	

- 1 The final township, Walpole forecasts of peak appear below. The Walpole average annual
- 2 growth is less than the system average for the 2017-2021 years.

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 39 of 46

	Walpole Township Peaks								
		Summer		Winter		Summer		Winter	
	Normal		Normal		Extreme		Extreme		
year		Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth	Peak Mw	Growth
	2015	5.2953		4.334		5.6903		4.6801	
	2016	5.3545	1.12%	4.3758	0.96%	5.7486	1.02%	4.7202	0.86%
	2017	5.4024	0.89%	4.3983	0.51%	5.7959	0.82%	4.7414	0.45%
	2018	5.4349	0.60%	4.4066	0.19%	5.828	0.55%	4.7487	0.15%
	2019	5.4605	0.47%	4.4127	0.14%	5.8536	0.44%	4.7539	0.11%
	2020	5.4873	0.49%	4.4225	0.22%	5.8803	0.46%	4.7627	0.19%
	2021	5.518	0.56%	4.4366	0.32%	5.9109	0.52%	4.7758	0.28%
	2022	5.55	0.58%	4.4498	0.30%	5.9428	0.54%	4.7881	0.26%
	2023	5.5816	0.57%	4.4629	0.29%	5.9744	0.53%	4.8004	0.26%
	2024	5.6115	0.54%	4.4729	0.22%	6.0042	0.50%	4.8096	0.19%
	2025	5.64	0.51%	4.4827	0.22%	6.0328	0.48%	4.8186	0.19%
	2026	5.668	0.50%	4.4917	0.20%	6.0609	0.47%	4.8268	0.17%
	2027	5.6947	0.47%	4.499	0.16%	6.0878	0.44%	4.8335	0.14%
	2028	5.7212	0.47%	4.507	0.18%	6.1144	0.44%	4.8408	0.15%
	2029	5.7474	0.46%	4.514	0.16%	6.1409	0.43%	4.8472	0.13%
	2030	5.774	0.46%	4.5224	0.19%	6.1677	0.44%	4.8549	0.16%
	2031	5.801	0.47%	4.5305	0.18%	6.1949	0.44%	4.8625	0.16%
2017	-2021	Avg	0.61%		0.28%		0.56%		0.24%

1 Historic Peak Day Values

	Liberty His	toric Peak D	Day Values	
year	month	day	hour	Mw
2000	10	30	18	120.587
2000	11	21	18	132.537
2000	12	14	18	133.21
2001	1	10	18	130.276
2001	2	22	19	131.967
2001	3	1	19	117.486
2001	4	24	14	125.857
2001	5	11	16	134.29
2001	6	27	16	159.728
2001	7	24	15	168.319
2001	8	6	14	173.866
2001	9	10	15	142.882
2001	10	4	14	121.58
2001	11	29	18	126.458
2001	12	17	18	137.219
2002	1	21	18	129.462
2002	2	11	19	130.548
2002	3	26	19	125.758
2002	4	17	15	133.886
2002	5	31	15	133.063
2002	6	27	15	159.353
2002	7	3	14	174.716
2002	8	14	15	181.939
2002	9	10	16	165.336
2002	10	2	15	134.005
2002	11	18	18	131.437
2002	12	9	18	143.227
2003	1	21	18	142.216
2003	2	13	19	135.745
2003	3	3	19	136.926
2003	4	3	18	127.502
2003	5	20	14	153.099
2003	6	27	14	175.018
2003	7	8	16	167.576

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 41 of 46

2003	8	22	15	171.589
2003	9	15	14	139.494
2003	10	29	18	129.818
2003	11	11	18	136.054
2003	12	16	18	141.432
2004	1	14	19	150.948
2004	2	17	19	138.039
2004	3	16	19	135.111
2004	4	30	15	126.933
2004	5	12	16	137.766
2004	6	9	15	166.476
2004	7	22	14	172.492
2004	8	3	15	169.516
2004	9	17	14	141.094
2004	10	8	15	124.583
2004	11	17	18	140.077
2004	12	21	19	151.159
2005	1	18	19	148.961
2005	2	21	19	137.439
2005	3	9	19	141.04
2005	4	20	13	125.3
2005	5	11	15	127.421
2005	6	27	15	184.603
2005	7	19	14	191.871
2005	8	10	16	179.92
2005	9	14	16	158.878
2005	10	25	19	145.312
2005	11	23	18	135.463
2005	12	13	18	161.546
2006	1	23	19	149.003
2006	2	8	19	139.41
2006	3	1	19	134.011
2006	4	4	20	123.651
2006	5	31	17	147.724
2006	6	19	13	181.58
2006	7	18	16	191.959
2006	8	2	15	195.419
2006	9	18	16	138.005
2006	10	4	20	126.699
2006	11	30	18	132.703
2006	12	4	18	146.719

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 42 of 46

2007126148141.53920072519144.084200744419130.327200752516148.8562007727144187.4162007727144178.70720078315187.52220079716165.5912007102219150.2672007112618139.8672007112618139.8672007112618139.8672007112618139.8672008112618139.867200811318144.175200820113139.86120081213135.01135.01200820113135.91200832714135.302200861015195.613200861015163.17620087818146.215200811518133.241200811518133.2412008121418145.151200811518133.2412008121418145.1522009132114136.1632009142814196.93 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
20072519146.21620073619144.08420074419130.327200752516148.856200762714187.416200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.8672007112518152.38920081318144.17520082118139.66420083519132.501200842316127.896200842316127.896200852714135.302200861015195.61320087815163.17620087815163.176200810920127.515200811518133.241200812818146.57820092519142.88320093219138.703200942815140.767200952116145.099200962613145.615200972915176.682009<	2007	1	26	18	141.539
20073619144.08420074419130.327200752516148.856200762714187.416200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815163.176200861015195.61320087815163.176200810920127.515200811518133.241200812818146.57820092519142.88320093219138.703200942815140.767200972915176.68200972915176.68200981814190.69820099316139.9392009 <td< td=""><td>2007</td><td>2</td><td>5</td><td>19</td><td>146.216</td></td<>	2007	2	5	19	146.216
20074419130.327200752516148.856200762714187.416200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.62620087815186.0420087815163.17620087815163.17620089515163.176200810920127.515200811518133.241200812818146.57820092519142.88320093219138.703200942815140.767200972915176.68200972915176.682009102819134.892009102819134.892009	2007	3	6	19	144.084
200752516148.856200762714187.416200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.8672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.6220087815186.0420087815163.17620089515163.17620089515163.176200810920127.515200811518133.241200812818146.57820092519142.88320093219138.703200942815140.767200972915176.68200972915176.682009102819131.4892009102819134.8932009<	2007	4	4	19	130.327
200762714187.416200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.04200861015195.262200878181620087815163.17620089515163.176200810920127.515200811518133.241200811518133.24120092519142.8832009114418147.42720093219138.703200942815140.767200972915176.68200972915176.68200981814190.6982009102819131.489200911	2007	5	25	16	148.856
200772714178.70720078315187.52220079716165.5912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815163.17620089515163.17620089515163.176200810920127.515200811518133.241200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200962613145.615200972915176.6820099316139.9392009102819131.4892009113018136.2882009121718154.022009121718154.022010 <td>2007</td> <td>6</td> <td>27</td> <td>14</td> <td>187.416</td>	2007	6	27	14	187.416
20078315187.52220079716165.5912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.04200881816159.61320089515163.176200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200972915176.6820099316139.3392009102819131.4892009113018136.2882009121718143.94320102419140.44720103319131.9582010 <td>2007</td> <td>7</td> <td>27</td> <td>14</td> <td>178.707</td>	2007	7	27	14	178.707
20079716165.912007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815163.17620089515163.176200810920127.515200811518133.241200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.6820099316139.3392009113018136.2882009121718143.9432009121718143.94320102419140.44720103319131.9582010 <td>2007</td> <td>8</td> <td>3</td> <td>15</td> <td>187.522</td>	2007	8	3	15	187.522
2007102219150.2672007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.262200861015186.0420087815163.17620089515163.176200810920127.515200811518133.241200811518133.241200811518134.732009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.6820099316139.3932009113018134.892009121718154.022010141218143.94320102419140.44720103319131.9582010	2007	9	7	16	165.591
2007112618139.867200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.0420089515163.17620089515163.176200810920127.515200811518133.241200812818146.578200811518133.241200811518134.742720092519142.8832009114418147.42720092519142.88320093219138.703200962613145.615200972915176.6820099316139.9392009102819131.4892009113018143.943201011218143.94320102419140.44720103319131.95820104720124.0392010<	2007	10	22	19	150.267
200712518152.38920081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.04200881816159.61320089515163.176200810920127.515200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200972915176.68200972915176.68200981814190.6982009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.03920104720124.0392010 <t< td=""><td>2007</td><td>11</td><td>26</td><td>18</td><td>139.867</td></t<>	2007	11	26	18	139.867
20081318144.17520082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.0420087815163.17620089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718144.94320102419140.44720103319131.95820104720124.03920104720124.039201052616174.742	2007	12	5	18	152.389
20082118139.66420083519132.501200842316127.896200852714135.302200861015195.26220087815186.0420089515163.17620089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.6820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.03920104720124.039201052616174.742	2008	1	3	18	144.175
20083519132.501200842316127.896200852714135.302200861015195.26220087815186.0420089515163.17620089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.03920104720124.039201052616174.742	2008	2	1	18	139.664
200842316127.896200852714135.302200861015195.26220087815186.04200881816159.61320089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.03920104720124.039201052616174.742	2008	3	5	19	132.501
200852714135.302200861015195.26220087815186.04200881816159.61320089515163.176200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.03920104720124.039201052616174.742	2008	4	23	16	127.896
200861015195.26220087815186.04200881816159.61320089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2008	5	27	14	135.302
20087815186.04200881816159.61320089515163.176200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2008	6	10	15	195.262
200881816159.61320089515163.176200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.0220102419140.44720103319131.95820104720124.039201052616174.742	2008	7	8	15	186.04
20089515163.176200810920127.515200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.0220102419140.44720103319131.95820104720124.039201052616174.742	2008	8	18	16	159.613
200810920127.515200811518133.241200812818146.5782009114418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.0220102419140.44720103319131.95820104720124.039201052616174.742	2008	9	5	15	163.176
200811518133.241200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320103319131.95820104720124.039201052616174.742	2008	10	9	20	127.515
200812818146.578200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.0220102419140.44720103319131.95820104720124.039201052616174.742	2008	11	5	18	133.241
200911418147.42720092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320103319131.95820104720124.039201052616174.742	2008	12	8	18	146.578
20092519142.88320093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	1	14	18	147.427
20093219138.703200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320103319131.95820104720124.039201052616174.742	2009	2	5	19	142.883
200942815140.767200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320103319131.95820104720124.039201052616174.742	2009	3	2	19	138.703
200952116145.009200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	4	28	15	140.767
200962613145.615200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	5	21	16	145.009
200972915176.68200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	6	26	13	145.615
200981814190.69820099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	7	29	15	176.68
20099316139.9392009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	8	18	14	190.698
2009102819131.4892009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	9	3	16	139.939
2009113018136.2882009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	10	28	19	131.489
2009121718154.02201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	11	30	18	136.288
201011218143.94320102419140.44720103319131.95820104720124.039201052616174.742	2009	12	17	18	154.02
20102419140.44720103319131.95820104720124.039201052616174.742	2010	1	12	18	143.943
20103319131.95820104720124.039201052616174.742	2010	2	4	19	140.447
2010 4 7 20 124.039 2010 5 26 16 174.742	2010	3	3	19	131.958
2010 5 26 16 174.742	2010	4	7	20	124.039
	2010	5	26	16	174.742

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 43 of 46

2010 6 28 14 171.967 2010 7 7 16 196.543 2010 9 1 16 187.363 2010 9 1 16 186.389 2010 10 1 10 139.359 2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 7 22 15 201.93 2011 10 10 16 139.923 2011 14 <th></th> <th></th> <th></th> <th></th> <th></th>					
2010 7 16 196.543 2010 8 31 17 187.363 2010 10 1 10 139.359 2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 12 19 18 146.848 2012 2 29<	2010	6	28	14	171.967
2010 8 31 17 187.363 2010 9 1 16 186.389 2010 10 1 10 139.359 2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 12 19 18 146.848 2012 2 </td <td>2010</td> <td>7</td> <td>7</td> <td>16</td> <td>196.543</td>	2010	7	7	16	196.543
2010 9 1 16 186.389 2010 10 1 10 139.359 2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 12 19 18 146.848 2012 2 29 19 139.924 2012 1 </td <td>2010</td> <td>8</td> <td>31</td> <td>17</td> <td>187.363</td>	2010	8	31	17	187.363
2010 10 1 10 139.359 2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 3 1 19 140.808 2012 1 16<	2010	9	1	16	186.389
2010 11 29 18 138.456 2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 1 16 18 142.842 2012 3 1 19 140.808 2012 16 18	2010	10	1	10	139.359
2010 12 15 18 149.16 2011 1 24 19 150.041 2011 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 3 1 19 140.808 2012 4 16 18 142.882 2012 7 17 </td <td>2010</td> <td>11</td> <td>29</td> <td>18</td> <td>138.456</td>	2010	11	29	18	138.456
2011 1 24 19 150.041 2011 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 2 29 19 139.924 2012 3 1 19 140.808 2012 5 31 14 149.487 2012 6 21 </td <td>2010</td> <td>12</td> <td>15</td> <td>18</td> <td>149.16</td>	2010	12	15	18	149.16
2011 2 18 155.316 2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 2 29 19 139.924 2012 3 1 19 140.808 2012 4 16 18 142.882 2012 5 31 14 149.487 2012 6 21 </td <td>2011</td> <td>1</td> <td>24</td> <td>19</td> <td>150.041</td>	2011	1	24	19	150.041
2011 3 21 20 144.149 2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 1 16 18 142.882 2012 3 1 19 140.808 2012 3 1 19 140.808 2012 4 16 18 142.882 2012 7 17 17 191.846 2012 6 <td>2011</td> <td>2</td> <td>2</td> <td>18</td> <td>155.316</td>	2011	2	2	18	155.316
2011 4 28 12 140.458 2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 2 29 19 139.924 2012 3 1 19 140.808 2012 3 1 19 140.808 2012 4 16 18 142.882 2012 5 31 14 149.487 2012 6 21 16 188.008 2012 7 <td>2011</td> <td>3</td> <td>21</td> <td>20</td> <td>144.149</td>	2011	3	21	20	144.149
2011 5 31 16 162.456 2011 6 9 15 183.139 2011 7 22 15 205.939 2011 8 1 15 186.77 2011 9 14 14 157.534 2011 10 10 16 139.923 2011 11 28 18 138.63 2011 12 19 18 146.848 2012 1 16 18 150.194 2012 2 29 19 139.924 2012 3 1 19 140.808 2012 3 1 19 140.808 2012 4 16 18 142.882 2012 5 31 14 149.487 2012 6 21 16 188.008 2012 7 17 17 191.846 2012 10 </td <td>2011</td> <td>4</td> <td>28</td> <td>12</td> <td>140.458</td>	2011	4	28	12	140.458
20116915183.139201172215205.93920118115186.77201191414157.5342011101016139.9232011112818138.632011121918146.848201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756 <td>2011</td> <td>5</td> <td>31</td> <td>16</td> <td>162.456</td>	2011	5	31	16	162.456
201172215205.93920118115186.77201191414157.5342011101016139.9232011112818138.632011121918146.848201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2011	6	9	15	183.139
20118115186.77201191414157.5342011101016139.9232011112818138.632011121918146.848201211618150.194201222919139.924201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2011	7	22	15	205.939
201191414157.5342011101016139.9232011112818138.632011121918146.848201211618150.194201222919139.924201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2011	8	1	15	186.77
2011101016139.9232011112818138.632011121918146.848201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201371913203.761201391116191.313201310215140.756	2011	9	14	14	157.534
2011112818138.632011121918146.848201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2011	10	10	16	139.923
2011121918146.848201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201371913203.761201371913203.761201382117181.325201391116191.313201310215140.756	2011	11	28	18	138.63
201211618150.194201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2011	12	19	18	146.848
201222919139.92420123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	1	16	18	150.194
20123119140.808201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	2	29	19	139.924
201241618142.882201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	3	1	19	140.808
201253114149.487201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	4	16	18	142.882
201262116192.762201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	5	31	14	149.487
201271717191.84620128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	6	21	16	192.762
20128316188.00820129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	7	17	17	191.846
20129716165.8422012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	8	3	16	188.008
2012101519137.546201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	9	7	16	165.842
201211718141.0172012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	10	15	19	137.546
2012121618149.861201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	11	7	18	141.017
201312418154.65920132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2012	12	16	18	149.861
20132519146.90420133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2013	1	24	18	154.659
20133719139.796201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2013	2	5	19	146.904
201341214130.322201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2013	3	7	19	139.796
201353116182.108201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2013	4	12	14	130.322
201362412191.469201371913203.761201382117181.325201391116191.313201310215140.756	2013	5	31	16	182.108
201371913203.761201382117181.325201391116191.313201310215140.756	2013	6	24	12	191.469
201382117181.325201391116191.313201310215140.756	2013	7	19	13	203.761
2013 9 11 16 191.313 2013 10 2 15 140.756	2013	8	21	17	181.325
2013 10 2 15 140.756	2013	9	11	16	191.313
	2013	10	2	15	140.756

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 44 of 46

2013	11	25	18	145.9
2013	12	17	19	159.28
2014	1	2	18	161.33
2014	2	11	19	145.35
2014	3	3	19	144.09
2014	4	15	14	122.63
2014	5	12	16	133.566
2014	6	30	17	172.905
2014	7	23	16	193.21
2014	8	27	16	175.731
2014	9	2	15	177.966
2014	10	16	12	134.995
2014	11	18	18	135.778
2014	12	8	18	143.234
2015	1	8	18	148.541
2015	2	16	19	144.885
2015	3	5	19	137.502
2015	4	2	11	123.717
2015	5	27	16	159.605
2015	6	23	17	149.229

1

Rockingham and Grafton Economic Variables

Rockingham and Grafton Economic Variables

				Ratio	Ratio	
year		Employment	Households	Employment	Households	emp_hh
	2000	187.907035	136.67992	0.920630285	0.890251731	0.908479
	2001	190.213308	138.994921	0.931929622	0.905330271	0.92129
	2002	188.792416	141.139531	0.924968114	0.919298985	0.9227
	2003	188.116395	142.7048	0.921656022	0.929494217	0.924791
	2004	192.795558	144.091146	0.944581077	0.93852405	0.942158
	2005	195.961972	145.783314	0.960094582	0.949545826	0.955875
	2006	199.001481	147.631915	0.974986329	0.961586514	0.969626
	2007	200.826942	148.693788	0.983929978	0.968502924	0.977759
	2008	200.737984	150.063565	0.983494138	0.977424836	0.981066
	2009	194.560295	150.820776	0.953227216	0.982356859	0.964879
	2010	195.343011	151.627674	0.957062049	0.987612512	0.969282
	2011	197.024053	151.825071	0.965298133	0.988898239	0.974738
	2012	199.328096	152.626136	0.976586544	0.9941159	0.983598
	2013	201.23947	153.175113	0.985951115	0.99769161	0.990647
	2014	204.106945	153.529519	1	1	1
	2015	208.568515	154.575235	1.021858982	1.006811172	1.01584
	2016	212.760828	155.736281	1.042398768	1.014373536	1.031189
	2017	215.26408	156.863478	1.054663182	1.021715427	1.041484
	2018	216.525787	157.928542	1.060844779	1.02865262	1.047968
	2019	217.550317	158.974593	1.065864354	1.035465974	1.053705
	2020	218.847603	160.012894	1.072220267	1.04222885	1.060224
	2021	220.484682	161.037051	1.080240959	1.0488996	1.067704
	2022	221.987483	162.080835	1.087603771	1.055698188	1.074842
	2023	223.397776	163.17224	1.094513349	1.062806951	1.081831
	2024	224.597318	164.144965	1.100390376	1.069142703	1.087891
	2025	225.737448	165.124695	1.10597632	1.075524082	1.093795
	2026	226.792275	166.073529	1.111144332	1.081704223	1.099368
	2027	227.775758	166.90446	1.115962801	1.087116413	1.104424
	2028	228.761927	167.756316	1.12079443	1.092664897	1.109543
	2029	229.615563	168.6358	1.124976727	1.098393332	1.114343
	2030	230.537068	169.541138	1.129491542	1.104290166	1.119411
	2031	231.455754	170.397771	1.133992545	1.109869764	1.124343

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix B - Page 46 of 46

Table 8

1

year	month	day	hour	9	system mw	psa total	mw_e	mw_w	Eastern %	Western %
	2014	3	3	19	144.09	144.088	66.7299	77.3576	46.312%	53.688%
	2014	4	15	14	122.63	122.625	50.2352	72.3902	40.966%	59.034%
	2014	5	12	16	133.566	133.565	57.9524	75.613	43.389%	56.611%
	2014	6	30	17	172.905	156.836	69.5198	87.3159	44.327%	55.673%
	2014	7	23	16	193.21	193.213	96.3262	96.8868	49.855%	50.145%
	2014	8	27	16	175.731	175.731	87.1339	88.5967	49.584%	50.416%
	2014	9	2	15	177.966	177.966	87.8959	90.07	49.389%	50.611%
	2014	10	16	12	134.995	134.995	54.5696	80.4256	40.423%	59.577%
	2014	11	18	18	135.778	135.892	62.2174	73.6748	45.784%	54.216%
	2014	12	8	18	143.234	143.321	68.0705	75.2504	47.495%	52.505%
	2015	1	8	18	148.541	148.451	69.6552	78.7954	46.921%	53.079%
	2015	2	16	19	144.885	144.833	68.6982	76.1348	47.433%	52.567%
	2015	3	5	19	137.502	137.502	63.046	74.4561	45.851%	54.149%
	2015	4	2	11	123.717	123.717	53.1958	70.5207	42.998%	57.002%
	2015	5	27	16	159.605	173.241	80.9305	92.3104	46.716%	53.284%
	2015	6	23	17	149.229	163.897	76.974	86.9234	46.965%	53.035%

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix C - Page 1 of 3

Appendix C. Distribution Planning Process Map and Timeline

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix C - Page 2 of 3

Appendix C. Distribution Planning Organizational Chart and Key Positions

Appendix C. Prioritization of System Deficiencies

THIS PAGE INTENTIONALLY LEFT BLANK

1	Appendix D - Distribution Planning Criteria Summary
2	1.0 <u>Introduction</u>
3	This document summarizes the Distribution Planning Criteria and Strategy that will be
4	used by the Engineering Department of Liberty Utilities (Granite State Electric) Corp.
5	d/b/a Liberty Utilities ("Liberty" or the "Company") to review and evaluate the
6	performance of its distribution system for each Planning Study Area ("PSA").
7	2.0 <u>Equipment Ratings</u>
8	Thermal limits are recognized for all system elements in conducting planning studies.
9	The current in equipment and lines are limited so that voltage drops are held to
10	reasonable values; so that conductors will not be severely annealed or damaged; so that
11	switches, connectors, etc. will not be overloaded and that clearances are not exceeded.
12	Several factors are taken into account, including: 1) ambient temperatures, 2) load cycles,
13	3) wind velocities, and 4) potential loss of life of equipment.
14	Liberty's Distribution Planning Department maintains equipment ratings for all major
15	equipment, including transformers, overhead lines, and underground cables. Overcurrent
16	protection system settings are also taken into account where applicable.
17	Figure D-1 summarizes the Equipment Rating criteria:

	Overhead Conductors		Underground Cables		Transformers	
Condition	Duration	Design Criteria	Duration	Design Criteria	Duration	Design Criteria
Normal	Continuous	 The maximum value for normal peak loads on all new and rebuilt feeders Temperature limit for 100% ampacity for normal operating conductor is <u>176°F/80°C for bare conductors</u> and <u>167°F/75°C for spacer cable, tree wire, & covered conductors</u> 	Continuous	 Maximum loading that does not cause the conductor temperature to exceed its design value <u>at</u> <u>any time</u> during a 24-hour load cycle Normal cable ampacities are based on a 90° insulation operating temperature. 	Continuous	 Level for the peak hour in the 24-hour load cycle causes a cumulative (24 hour) 0.2% loss of Transformer life, or The Top Oil Temperature <u>exceeds 110°C</u>, or The Hot Spot Copper temperature <u>exceeds 180°C</u>
LTE	24 Hours	 The absolute maximum ampacity allowed for a given conductor and <u>should not be exceeded at any</u> <u>time</u>. Temperature limit for 100% ampacity for operating at an elevated temperature during emergency conditions limited to a 24 hour period is <u>194°F/90°C</u> for <u>both bare and spacer cable, tree</u> wire, & covered conductors 	100 - 300 Hours	 Maximum loading that does not cause the conductor temperature to exceed its design value <u>over several consecutive</u> 24-hour load cycles. Emergency cable ampacities are based on 130° insulation operating temperature. 	1 - 300 Hours	 Level for the peak hour with the emergency load added in the 24-hour load cycle causes a cumulative (24 hour) <u>3.0%</u> loss of Transformer life, or the Top Oil Temperature <u>exceeds 130 °C</u>, or the Hot Spot Copper temperature <u>exceeds 180 °C</u>
STE	As Needed	 Estimated conservatively using seasonal ambient data along with circuit specific information by the Engineering Department 	1 - 24 Hours	 Maximum loading that does not cause the conductor temperature to exceed its <u>allowable</u> <u>emergency value at any</u> <u>time</u> during a 24-hour load cycle. Emergency cable ampacities are based on 130° insulation operating temperature. 	15 minutes	 The one hour operation of the transformer at that level for the peak hour in the 24 hour load cycle causes a cumulative (24 hour) <u>3.0%</u> loss of Transformer Life, or a hot spot copper temperature <u>exceeding</u> <u>180°C</u>. Maximum STE rating is limited to twice the transformer's "nameplate" rating (200%).

Figure D-1. Equipment Rating Criteria Summary

2 **3.0** Planning Criteria

1

For normal loading conditions on distribution feeders and transformers, the planning criteria is based on facilities to remain within 75% of normal ratings at all times. For sub-transmission lines, facilities are to remain within 90% of normal ratings.

6 For N-1 contingency situations, the planning criteria is based on interrupted load

- 7 returning to service within a reasonable time via system reconfiguration through
- 8 switching, installation of temporary equipment, such as mobile transformers or
- 9 generators, and/or by repair of a failed device. Where practical, switching flexibility is

- 1 integrated into the system design to minimize the duration of customer outages to meet
- 2 reliability objectives.
- 3 The following criteria summarized in Figure D-2 shall guide loading and contingency
- 4 planning on the distribution system:
- 5

Condition	Sub-Transmission	Substation Transformer	Distribution Circuit
Normal	 Loading to remain within 90% of normal rating. Voltage at customer meter to remain within acceptable range. Circuit phasing is to remain balanced. 	 Loading to remain within 75% of normal rating. Voltage at customer meter to remain within acceptable range. Circuit phasing is to remain balanced. 	 Loading to remain within 75% of normal rating. Voltage at customer meter to remain within acceptable range. Circuit phasing is to remain balanced. Each feeder should have at least three feeder ties to adjacent feeders.
N-1 Contingency, which results in facilities operating above their Long Term Emergency (LTE) rating but below their Short Term Emergency (STE) rating.	 Load must be transferred to other supply lines in the area to within their LTE rating. Repairs expected to be made within 24hrs. Evaluate alternatives if more than 36 MWhr of load at risk results following post- contingency switching. 	 Load must be transferred to nearby transformers to within their LTE rating. Repairs or installation of Mobile Transformer expected to take place within 24 hours. Evaluate alternatives if more than 60 MWhr of load at risk results following post- contingency switching. 	 Load must be transferred to nearby feeders to within their LTE rating. Repairs expected to be made within 24hrs. Evaluate alternatives if more than 16 MWhr of load at risk results following post- contingency switching.
N-1 Contingency, which results in facilities operating above their Short Term Emergency (STE) rating	 As Needed – Typically 15min for OH conductors and 1-24 hours for UG cables 	Loads must be reduced within 15 minutes to operate within their LTE rating	As Needed – Typically 15min for OH conductors and 1-24 hours for UG cables

6	Application of these criteria will result in somewhat less load at risk than previous criteria
7	which generally limited load at risk to between 4 and 20 MW pending the installation of a
8	mobile device. Therefore it is expected that the Load Relief budgets will increase from
9	historic levels for a given load growth rate. The capital cost associated with meeting the
10	new criteria for both normal and N-1 contingency conditions are shown in Figure D-3:

	\$Millions
Total Substation Scope	\$13.5
Other Distribution Line Scope	\$3
Total Cost over 15 Years	\$16.5

Figure D-3. Estimated Capital Costs of New Criteria

- 2 Liberty has refined the distribution planning criteria to better fit Liberty's strategy and
- 3 scale of facilities. The Figure D-4 below provides a summary of the changes to Liberty's
- 4 new criteria from the previous criteria under National Grid.

1

New Criteria	Previous Criteria	Reason for Change
During normal operation, all distribution feeders to remain within 75% of normal ratings.	During normal operation, all distribution feeders to remain within 100% of normal ratings.	Reflects Liberty's strategy to proactively plan for sufficient capacity to meet changes in demand.
During normal operation, all sub- transmission lines to remain within 90% of normal ratings.	During normal operation, all sub- transmission lines to remain within 100% of normal ratings.	Reflects Liberty's strategy to proactively plan for sufficient capacity to meet changes in demand.
During normal operation, all transformers to remain within 75% of normal ratings.	During normal operation, all transformers to remain within 100% of normal ratings.	Reflects Liberty's strategy to proactively plan for sufficient capacity to meet changes in demand.
For the loss of a distribution feeder, if more than 16MWhrs of load at risk results for a single feeder fault evaluate alternatives to mitigate.	No Change.	Existing targets are adequate given size of a typical Liberty distribution feeder.
For the loss of a sub-transmission supply line, the quantity of load at risk of being out of service following post contingency switching should be limited to 20MW combined. If more than 240MWhrs of load at risk results for a single line fault evaluate alternatives to mitigate.	For the loss of a sub-transmission supply line, the quantity of load at risk of being out of service following post contingency switching should be limited to 1.5MW combined. If more than 36MWhrs of load at risk results for a single line fault evaluate alternatives to mitigate.	Reflects Liberty's strategy and scale of facilities.
For the loss of a transformer, the quantity of load at risk of being out of service following post contingency switching should be limited to 10MW combined. If more than 240MWhrs of load at risk results for a single line fault evaluate alternatives to mitigate.	For the loss of a sub-transmission supply line, the quantity of load at risk of being out of service following post contingency switching should be limited to 2.5MW combined. If more than 60MWhrs of load at risk results for a single line fault evaluate alternatives to mitigate.	Reflects Liberty's strategy and scale of facilities.
Every effort must be made to return the failed sub- transmission line to service within 12 hours.	Every effort must be made to return the failed sub-transmission line to service within 24 hours.	Reducing normal loading to 90% for sub-transmission lines allows for adequate capacity on adjacent lines to restore load post- contingency.
N/A	Every effort must be made to return the failed distribution feeder to service within 24 hours.	Establishes a new limit for repairing feeder faults on Liberty's distribution feeders.

Figure D-4. Summary of Planning Criteria Changes

1

1 4.0 Primary Circuit Voltage Criteria

- 2 The normal and emergency voltage to all customers shall be in line with limits specified
- 3 by the state of NH and within the limits of ANSI C84.1-2006.
- 4 These upper and lower voltage ANSI limits, as measured at the customer's meter, are
- 5 listed below in Figure D-5:

	4	~	
	c		
		٦	

Figure D-5. V	Voltage	Requirements	for I	Liberty	Utilities
---------------	---------	--------------	-------	---------	-----------

For 120 V – 600 V Systems					
	Service Voltage (V)				
	Ran	nge A Ran		ige B	
(V)	Max	Min	Max	Min	
120	126	114	127	110	
240	252	228	254	220	
480	504	456	508	440	

7

Source: ANSI

8 Voltage at the customer meter will be maintained within 5% of nominal voltage (120V).

9 Voltage on the feeders is controlled by the station load tap changer or station regulators

10 on feeders, the application of distribution capacitor banks, and the application of pole or

- 11 pad mounted line regulators.
- 12

5.0 Distribution Circuit Phase Imbalance Criteria

13 This criterion is established to limit the load imbalance among the three phases of a

- 14 primary distribution circuit. These criteria call for the correction of phase imbalances of
- 15 existing and new distribution circuits. Phase imbalance is defined on the basis of
- 16 connected KVA (CKVA) load for that circuit as:

1	$\%$ imbalance = $\frac{(phase \ load - average \ phase \ load)}{average \ phase \ load} X \ 100$
2	Two criteria should be met for the circuit to be considered for corrective action:
3	1. The calculated neutral current should not exceed 30% of the feeder ground relay
4	pickup setting.
5	2. The loading between the low and high phase should not exceed 100A.
6	6.0 Environmental Review of Planning Activities
7	This procedure describes how environmental considerations are incorporated into the
8	planning and design of distribution facilities to ensure that all Distribution activities are
9	in compliance with environmental laws and regulations.
10	All Engineers attend an Environmental Training Program provided by the Environmental
11	Engineer on a regular basis. The training includes a section on identifying environmental
12	considerations related to project and work order preparation.
13	It is the responsibility of the Engineering Department to identify and address during the
14	planning, design or estimating stages any environmental considerations related to project
15	or work order activities. At a minimum, the environmental evaluation will assess the
16	following conditions through discussion with the property owner, review of site plans
17	and/or field observations:
18	• Location of any rivers or streams within 200 feet of the proposed work
19	• Location of flood plains in the vicinity of the proposed work

1	• Bodies of water or potential indications of wetlands (such as wet, soft soil or low
2	lying land; or areas naturally devoid of trees with vegetation primarily no taller
3	than shrub height) within 100 feet of the proposed work
4	• Areas on the property that are contaminated with oil or other hazardous materials
5	• The total square footage/ acreage disturbed
6	• The potential for asbestos containing material to be removed or disturbed
7	• Any waste that will be generated by the proposed work activities
8 9	The Engineering Department will address environmental considerations in one or more of the following ways:
10	• Where practical, choose an alternative that has less environmental impact.
11	• Consult with the Environmental Engineer to determine if permitting or regulatory
12	requirements exist. If there are permitting or regulatory requirements, work with
13	the Environmental Engineer to ensure that the appropriate permits are obtained
14	and that any regulatory requirements are followed.
15	• Confirm that property developers have included electric utilities in their
16	environmental filings. It is the responsibility of the property developer to obtain
17	permits and licenses for work on private property.

1 Appendix E. Hypothetical Case Study: Evaluation of Non-Wires Solution

2 Background

- 3 To illustrate how the Company's planning process will evaluate and, as feasible, implement a non-wires
- 4 solution, the Company prepared the following hypothetical case study. The case study consists of five
- 5 phases that describes the planning process, beginning with a description of a hypothetical situation, the
- 6 approach to evaluate a non-wires solution, and the potential action steps.
- 7 The case study identifies important information that is needed to evaluate the potential benefits and costs
- 8 of non-wires solutions.

Planning Phase	Description
Hypothetical Situation	The Company needs to install one new feeder to address an anticipated distribution system deficiency of approximately 1,600 kW in serving a targeted area (i.e., section of a community) within the next five years. The deficiency was identified through an annual planning process that identifies distribution system deficiencies based on certain planning criteria. The engineering study includes a forecast of peak demands as well as a review of asset performance and conditions. The estimated investment in the new feeder is \$5.0 million (in \$2015) and the system deficiency represents approximately 13 percent of the total capacity in the targeted area.
Market Profile of Targeted Area	The targeted area consists of approximately 2,200 customers; Feeder 1 serves 1,900 customers (75% of which are residential), while Feeder 2 serves 300 customers (75% of which are small commercial). Feeder 1 has a current capacity of 7,100 kW and Feeder 2 has a current capacity of 5,500 kW. The targeted area also consists of eleven large commercial customers who represent approximately 40 percent of the total load in the targeted area.
Opportunity	The Company believes there is an opportunity to implement a non-wires solution that would defer installation of the new feeders for several years through demand (kW) reductions in the targeted area since the planned investment meets the Company's screening criteria for consideration of a non-wires solution. Potential non-wires solutions include programs that complement and improve the operations of the existing distribution system and that individually or collectively could defer the need for a wires solution, including: (a) targeted energy efficiency; (b) targeted demand response; (c) targeted load controls; and/or (d) Distributed Generation ("DG"). See Figure 1 for a comprehensive list of non- wires programs that could be considered. Most of the non-wires solutions require some level of customer participation to reduce demand (kW) in the targeted area. The graph below illustrates the

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Docket No. DE 16-____ Least Cost Integrated Resource Plan January 15, 2016 Appendix E - Page 2 of 6

Planning Phase	Description						
	expected relationship between customer participation and reduced demand (kW) in the targeted area.						
	Avoided kW						
	An example of the relationship between customer participation in a non-wires program and reduction in demand (kW) is a Direct Load Controls ("DLC") program. Based on the results of a national study by E-Source, the average load reduction of residential customers participating in an air conditioning DLC program is 1.12 kW per residential participant. To achieve a reduction in demand (kW) of 1,600 kW based on the E-Source average of 1.12 kW per residential participant, approximately 1,400 residential customers in the target area; thus, almost all residential customers in the target area would need to participate in the DLC program. This is unlikely since the E-Source survey shows that only 13.3 percent of eligible residential customer participate in a DLC program. To better evaluate potential savings and customer participate rates, the Company needs perform a comprehensive evaluation of customer demographics and behavior in the targeted area in order to get a full understanding of the expected participation, corresponding load reduction, benefits, and costs from these potential NWA programs.						
Challenges	 The Company notes that there are several challenges to a successful evaluation and implementation of a non-wires solution, including: Insufficient data to evaluate the potential benefits and costs of a non-wires solution, including: Insufficient data to evaluate the potential benefits and costs of a non-wires solution, including: (a) current saturation levels of targeted equipment and associated peak demands; and (b) consumer interest and likelihood of installing the proposed measures based on a range of incentive offerings. This can be addressed through a market assessment of customers and equipment in the targeted area. Insufficient data to estimate the potential costs of designing, developing, implementing, and administrating non-wires programs. This can be addressed through research and evaluation of similar programs designed and implemented in other companies. 						

Planning Phase	Description						
	 Little operating experience with such non-wires programs, including load control and DG programs. This can be addressed by retaining experienced firms to train Liberty employees and/or administer the programs. No mechanism(s) to recover the cost of evaluating, designing, developing, implementing and administering non-wires programs. This can be addressed through regulatory approval of a cost recovery mechanism. No mechanism(s) to recover the lost revenues associated with non-wires programs, since such programs reduce the sales that fund recovery of the Company's fixed costs. This can be addressed through regulatory approval of a cost recovery mechanism. No mechanism(s) to recover potential investments in non-wires programs, such as distributed generation. This can be addressed through regulatory approval of a cost recovery mechanism. The Company believes that it is important to address such challenges in order to ensure that non-wires solutions can be treated on equal footing as traditional T&D wires solutions. 						
Evaluation	 The Company's evaluation of the hypothetical situation would be based on a cost effectiveness test performed consistent with the energy efficiency benefit-cost test approved by the New Hampshire Public Utilities Commission (the "Commission"). The cost effectiveness test is based on: (a) data that quantifies the demand savings (in kW) of the non-wires solutions; (b) data that quantifies the costs of the non-wires solutions; (c) data that quantifies the benefits of deferring investment in the new feeders; and (d) a risk assessment of the wires vs. non-wires solutions. Specifically, a non-wires solution would enable the Company to defer a wires solution if the following conditions were met: The demand savings of the non-wires solutions are sufficient to address the distribution system deficiency. The demand savings can be estimated 						
	 through a market assessment. The costs associated with design, development, implementation, and administration of the non-wires solution is less than or equal to the benefits of deferring investment in the new feeders. The costs can be estimated through research and analysis of similar programs. If the Company's risk assessment of the non-wires solution does not result in a risk sufficiently greater, in the Company's opinion, than the wires solution. Such risk assessment is based on a number of factors, including size, complexity, and Company control over the non-wires solution. 						
	In simplistic terms, if the carrying cost associated with the hypothetical wires solution of \$5 million is 15%, then a non-wires solution could be cost effective if						

Planning Phase	Description				
	it was sufficient to address the distribution system deficiency, cost annually less than \$750,000, and represented a risk that was not sufficiently greater, in the Company's opinion, than the wires solution. Figure 2 illustrates the Company's approach to measure such risk of non-wires and wires solutions.				
Actions/ Next Steps	In this final phase of this hypothetical case study, the Company would be responsible for implementing the non-wires program. Other than its current Energy Efficiency program, the Company has little experience operating and administrating non-wires programs, and thus would seek to retain experienced firms to assist in the development, implementation, and administration of the program, in particular for a load controls program.				
	As described above, there are a number of challenges that need to be addressed before the Company can implement a non-wires alternative program, some of which require regulatory action in order to move forward. An important first step is to perform the evaluation study to gather the necessary data, for which cost recovery is needed. Once the evaluation study has been completed, programs that pass the cost effectiveness screening can move forward to the implementation phase.				

Description

Residential	Direct Load Control (A/C Cycling)	 Programs offer financial incentives for allowing the utility to cycle customer's A/C during peak demand times Programs offer a free thermostat (Direct installation), or a rebate (bring-your-own-thermostat) that enables the utility to cycle the A/C or change the thermostat setpoint Multiple programs aimed at electrically heated homes, including special rates for allowing the heating system to be controlled, special rates for having a backup heating system so the electric heat can be interrupted 				
Residential	Programmable Communicating or Wi- Fi Enabled Thermostat					
Residential	Electric Heat Programs					
Residential	Water Heater Programs	Programs offer financial incentives for allowing the utility to cycle customer's electric water heater.				
Residential	Pool Pump Programs	Programs offer financial incentives for allowing the utility to interrupt power to customer's pool pumps				
Residential	Peak-Time Rebate (PTR) Dynamic Pricing Programs	Programs offer a bill credit for customers who save energy during DR events				
Residential	Critical Peak Pricing (CPP) Dynamic Pricing Programs	Programs have significantly higher rates for energy used during critical times				
Small Business	Direct Load Control (A/C Cycling)	Programs offer financial incentives for allowing the utility to cycle customer's A/C during peak demand times				
Small Business	Programmable Communicating or Wi- Fi Enabled Thermostat	Programs offer a free thermostat (Direct installation), or a rebate (bring-your-own-thermostat) that enables the utility to cycle the A/C or change the thermostat setpoint				
Medium to Large Business	Critical Peak Pricing Programs	Programs have significantly higher rates for energy used during critical times				
Medium to Large Business	Base Interruptible Programs	Programs offer an incentive to reduce customer's load to or below a level that is pre-selected by the customer, and has a penalty when that level is not met				
Medium to Large Business	Demand Bidding Programs	Programs offer an incentive to reduce customer's load with no penalty for failing to reduce load				
Medium to	Scheduled Load Reduction Programs	Programs offer an incentive to reduce load during pre-selected time periods				

Agricultural/Pumping

Interruptible Programs

Automated DR

Program

Figure 1. Summary of Potential NWA Programs

1

Sector

2

Medium to

Large Business

Medium to

Programs offer a year-round credit when customers allow

Programs offer incentives for installing technologies that

utility to temporarily interrupt service

automatically reduce load during events

Figure 2: Hypothetical Evaluation Matrix

Risk Matrix Measures the riskiness of the solution	Size	Number of Lead Elements	Internal Complexity	Construction Time (in Years)	Total Time (in Years)	Success Risk Factor	Customer Involvement	Regulatory Approvals	Total Risk
Risk Factors	Percentage of target area load; non-wires solutions considered only if <20%	Project steps prior to completion (e.g., design, permitting)	Internal complexity	Length of time to Complete Construction	Length of time to design, permit and build project	Experience w/ successful implementation of similar projects	Customer involvement to achieve expected outcome	Complexity of regulatory approvals to achieve expected outcome	Riskiness of the Project
	Each Ca	ategory is rated on	a 10-point scale that	at measures the imp	pact of each catego	ry on overall risk:	1 = Less risk, 10= N	lore risk	
Riskiness of Solutions									
New Feeder	5	2	2	2	2	2	2	2	19
Targeted Energy Efficiency	5	6	6	6	6	6	6	6	47
Targeted Demand Response	5	8	8	8	8	8	8	8	61
Customer DG	5	4	4	4	4	4	4	4	33
Liberty DG	5	6	6	6	6	6	6	6	47
Customer Back-up Generation	5	4	4	4	4	4	4	4	33
Liberty Back-up Generation	5	6	6	6	6	6	6	6	47
Interruptible Load	5	6	6	6	6	6	6	6	47